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Abstract:  In reporting measurement results, it may be necessary to include an interval that 
contains the true value with some specified confidence level or probability.  The interval may be 
reported as confidence limits, with an associated confidence level, or an expanded uncertainty, 
with an associated coverage factor.  This paper examines three methods for computing 
confidence limits and expanded uncertainties: 1) GUM, 2) Convolution and 3) Monte Carlo 
Simulation.  The first method combines error distribution variances, while the second and third 
methods directly combine error distributions via mathematical or numerical techniques.  Four 
direct measurement scenarios are evaluated and the intervals computed from each method are 
compared.   
 
INTRODUCTION 
Measurement uncertainty plays an important role in making decisions, managing risk, developing tolerances, 
selecting measurement methods, developing capability statements, achieving laboratory accreditation, hypothesis 
testing, establishing calibration intervals and communicating technical variables.  Therefore, uncertainty estimates 
should realistically reflect the measurement process under investigation or evaluation.   
 
Measurement uncertainty must also be reported in a way that can be readily understood and interpreted by others.  
At a minimum, the measured value, the combined standard uncertainty, its estimate type (A, B or A/B) and degrees 
of freedom should be reported.  In some instances, confidence limits with an associated confidence level or an 
expanded uncertainty with associated coverage factor may also be reported. 
 
Three methods for computing confidence limits and expanded uncertainties are discussed and compared.  The 
GUM1 method evaluates and combines error distribution variances and calculates the effective degrees of freedom 
of the uncertainty estimate for the combined measurement error.  The convolution method uses a mathematical 
approach for combining error distributions.  The Monte Carlo method involves the combination of error 
distributions via numerical simulation.  All three methods require the identification of measurement process errors 
and the evaluation of error distributions.  Consequently, appropriate error distributions must be applied to achieve 
realistic results from any of these methods. 
 
UNCERTAINTY ESTIMATION 
A measurement is a process whereby the value of a quantity is estimated.  In any given measurement scenario, each 
measured quantity is also accompanied by measurement error.  The basic relationship between the measured 
quantity x and the measurement error εx is given in equation (1). 
 
 x  =  xtrue  +  εx (1) 
 
An error model is an algebraic expression that defines the total error in the value of a measured quantity in terms of 
all relevant measurement process errors.  The error model for εx is the sum of the errors encountered during the 
measurement of x  
                                                           
1 Through out this paper, the term GUM refers to ISO Guide to the Expression of Uncertainty in Measurement and ANSI/NCSLI 
Z540-2-1997, the American National Standard for Expressing Uncertainty – U.S. Guide to the Expression of Uncertainty in 
Measurement. 
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 εx = ε1 + ε2 + ... + εk (2) 
 
where the numbered subscripts signify the different measurement process errors.  Measurement uncertainty is a 
quantification of our lack of knowledge of the sign and magnitude of measurement error.    
   
Measurement Process Errors 
Measurement process errors are the basic elements of uncertainty analysis.  Once these fundamental error sources 
have been identified, we can begin to develop uncertainty estimates.  The errors most often encountered in making 
measurements include, but are not limited to the following: 
 

• Reference Attribute Bias 
• Repeatability 
• Resolution Error 
• Computation Error 
• Operator Bias 
• Environmental Factors Error 

 
Reference Attribute Bias 
Calibrations are performed to obtain an estimate of the value or bias of selected unit-under-test (UUT) attributes by 
comparison to corresponding measurement reference attributes.  The error in the value of a reference attribute, at 
any instant in time, is composed of a systematic component and a random component.  Reference attribute bias is 
the systematic error component that persists from measurement to measurement during a measurement session.2  
Attribute bias excludes resolution error, random error, operator bias and other error sources that are not properties of 
the attribute. 
 
Repeatability 
Repeatability is a random error that manifests itself as differences in measured value from measurement to 
measurement during a measurement session.  It is important to note that, random variations in a measured quantity 
or UUT attribute are not separable from random variations in the reference attribute or random variations due to 
other error sources.  
 
Resolution Error 
Reference attributes and/or UUT attributes may provide indications of sensed or stimulated values with some finite 
precision.  The smallest discernible value indicated in a measurement comprises the resolution of the measurement.  
For example, a voltmeter may indicate values to four, five or six significant digits.  A tape measure may provide 
length indications in meters, centimeters or millimeters.  A scale may indicate weight in terms of kg, g, mg or µg. 
 
The basic error model for resolution error, εres, is 
 

εres =  xindicated – xsensed 
 

where xsensed is a “measured” value detected by a sensor or provided by a stimulus and xindicated is the indicated 
representation of xsensed.   In some measurement situations, repeatability may be considered to be a manifestation of 
resolution error.  If measurement repeatability is smaller than the display resolution, only resolution error should be 
included in the uncertainty analysis.  If measurement repeatability is larger than the display resolution, then both 
error sources should be included in the uncertainty analysis. 
 
Operator Bias 
Errors can be introduced by the person or operator making the measurement.  Because of the potential for human 
operators to acquire measurement information from an individual perspective or to produce a systematic bias in a 
measurement result, it sometimes happens that two operators observing the same measurement result will 

                                                           
2 A measurement session is considered to be an activity in which a measurement or sample of measurements is taken under fixed 
conditions, usually for a period of time measured in seconds, minutes or, at most, hours. 
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systematically perceive or produce different measured values.   
 
In reality, operator bias has a somewhat random character due to inconsistencies in human behavior and response.  
The random contribution is included in measurement repeatability and the systematic contribution is the operator 
bias. 
 
Environmental Factors Error 
Errors can result from variations in environmental conditions, such as temperature, vibration, humidity or stray emf.  
Additional errors are introduced when measurement results are corrected for environmental conditions.  For 
example, when correcting a length measurement for thermal expansion, the error in the temperature measurement 
will introduce an error in the length correction.  The uncertainty in the correction error is a function of the 
uncertainty in the error in the environmental factor.3 
 
Computation Error 
Data processing errors result from computation round-off or truncation, numerical interpolation of tabulated values, 
or the use of curve fit equations.  For example, in the regression analysis of a range of values, the standard error of 
estimate quantifies the difference between the measured values and the values estimated from the regression 
equation.4  
 
A regression analysis that has a small standard error of estimate has data points that are very close to the regression 
line.  Conversely, a large standard error of estimate results when data points are widely dispersed around the 
regression line.  However, if another sample of data were collected, then a different regression line would result.  
The standard error of the forecast accounts for the dispersion of various regression lines that would be generated 
from multiple sample sets around the true population regression line.  The standard error of forecast is a function of 
the standard error of estimate and the measured value and should be used when estimating uncertainty due to 
regression error. 
 
Error Distributions 
An important aspect of the uncertainty analysis is the fact that measurement errors can be characterized by 
probability distributions.  The probability distribution for a type of measurement process error is a mathematical 
description of how likely an error or a range of errors is likely or unlikely to occur.  With a basic understanding of 
error distributions and their statistics, we can estimate uncertainties.  Error distributions include, but are not limited 
to normal, lognormal, uniform (rectangular), triangular, quadratic, cosine, exponential, U-shaped and Student's t.  
Probability density functions for selected distributions are summarized in Table 1. 
 

Table 1.  Probability Distributions for Measurement Process Errors 
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where σ is the standard deviation, ±L are the containment 
limits, p is the containment probability and Φ-1() is the 
inverse normal distribution function. 

                                                           
3 In the length correction scenario, error in the coefficient of thermal expansion may also need to be taken into account.  
4 Hanke, J. et al.: Statistical Decision Models for Management, Allyn and Bacon, Inc. 1984. 
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where ± a are the minimum distribution bounding limits. 
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where ± a are the minimum distribution bounding limits. 
 
Choosing the Appropriate Distribution 
To obtain realistic uncertainty estimates, it is important that appropriate error distributions are used.  The normal and 
lognormal distributions are relevant to most real world measurement applications.  Other distributions such as the 
uniform, triangular, quadratic, cosine and U-shaped are also possible, although they have limited applicability.  
 
The normal distribution applies to a wide variety of measurement process errors, and is often used as the default 
distribution, unless information to the contrary is available.  The lognormal distribution is applied for errors that are 
bounded on one side with skewed (i.e., non-symmetric) containment limits.  When using the normal or lognormal 
distribution, some effort must be made to establish containment limits and containment probability. 
 
The uniform distribution is applicable for only a few measurement processes errors.  Chief among these are 
resolution error resulting from a digital readout or quantization error due to analog to digital conversion.  This 
results from the fact that it is hard to find real world instances in which a measurement process error has an equal 
probability of occurrence between two limits and zero probability of occurrence outside of these limits.  When 
applying the uniform distribution, it is important that the 100% containment limits are known and that they represent 
the minimum bounding limits.  
 
The quadratic, cosine or triangular distributions are applicable for errors that exhibit a central tendency, have 100% 
containment and known minimum bounding limits.  The U-shaped distribution is applicable for errors that have 
100% containment limits and the highest probability of occurrence is at or near known minimum bounding limits. 
   
Measurement Process Uncertainty 
Measurement processes uncertainty is the standard deviation of the probability distribution for the measurement 
process error.  The standard deviation of an error distribution is the square root of the distribution’s statistical 
variance.  If f(ε) represents the probability density function for an error distribution, and µε represents the 
distribution’s mode or mean value, then the variance or mean square error is given by 
 

 2var( ) ( )( )f dεε ε ε µ ε
∞

−∞
= −∫  (3) 

 
and the standard deviation becomes 
 var( )uε ε= . (4) 
 
For symmetric error distributions, µε is taken to be zero.  In these cases, equation (3) reduces to 
 

 2var( ) ( )f dε ε ε ε
∞

−∞
= ∫  (5)  

 
Equations (4) and (5) show that the uncertainty in a measurement error can be estimated if the distribution’s 
probability density function is known.   
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There are two approaches to estimating the standard deviation of an error distribution.  Type A estimates involve 
data sampling and analysis.  Type B estimates use engineering knowledge or recollected experience of measurement 
processes. 
 
Type A Estimates 
Random sampling is a cornerstone for obtaining relevant statistical information for Type A uncertainty estimates.  
Therefore, Type A estimates usually apply to the uncertainty due to repeatability or random error.  The data used for 
Type A uncertainty estimates typically consist of sampled values.5  It is important that each repeat measurement is 
independent, representative and taken randomly. 
 
Because the data sample is drawn from a population6 of values, we make inferences about the population from 
certain sample statistics and from assumptions about the way the population of values is distributed.  As shown in 
Figure 1, a sample histogram can aid in our attempt to picture the population distribution. 
 
The normal distribution is ordinarily assumed to be the underlying distribution for repeatability or random error.  
When samples are taken, the sample mean and the sample standard deviation are computed and assumed to 
represent the mean and standard deviation of the population distribution.  However, this equivalence is only 
approximate.  To account for this, the Student's t distribution is used in place of the normal distribution to compute 
confidence limits around the sample mean.  
 

Probability
Density

Population Distribution

εx

Sample Histogram

 
Figure 1.  Repeatability Distribution 

 
The sample mean, x , is obtained by taking the average of the sampled values.  The average value is computed by 
summing the values sampled and dividing them by the sample size, n.  
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The sample mean can be thought of as an estimate of the value that we expect to get when we make a measurement.  
This "expectation value" is called the population mean, which is expressed by the symbol µ.  
 
The sample standard deviation provides an estimate of the population standard deviation.  The sample standard 
deviation, sx, is computed by taking the square root of the sum of the squares of sampled deviations from the mean 
divided by the sample size minus one. 
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5 Data may also be comprised of sampled mean values or sampled cells.  The computed statistics vary slightly depending on the 
sample type. 
6 In statistics, a population is the total set of possible values for a random variable under consideration. 
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The value n-1 is the degrees of freedom for the estimate, which signifies the number of independent pieces of 
information that go into computing the estimate. Absent any systematic influences during sample collection, the 
sample standard deviation will approach its population counterpart as the sample size or degrees of freedom 
increases.  The degrees of freedom for an uncertainty estimate are useful for establishing confidence limits and other 
decision variables.  
  
The sample standard deviation provides an estimate of the repeatability or random error population standard 
deviation, ,x ranεσ .  As discussed previously, the standard deviation of an error distribution is equal to the square 

root of the distribution variance  
 
 , ,var( )x ran x ranεσ ε=  (8) 

 
Therefore, the sample standard deviation provides an estimate of the uncertainty due to repeatability or random 
error.7 
 ,x ran xu sε ≅  (9) 
 
If the objective of the uncertainty analysis is to characterize a given single measurement performed under specific 
circumstances, as in developing a statement of capability, then equation (9) should be used. 
 
If the standard deviation in the mean value of the estimate is intended to represent the uncertainty in the mean value 
due to repeatability or random error, then the uncertainty in the mean value can be estimated to be equal to the 
standard deviation divided by the square root of the sample size. 
 

 ,x ran
xs

u
nε ≅  (10) 

 
Type B Estimates 
With the exception of repeatability or random error, the uncertainty in each error source must be estimated 
heuristically from the containment limits, ±L, containment probability, p, and the inverse probability density 
function for the error distribution , F-1(p), as shown in equation (11).  
 

 
-1F ( )
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=  (11)  

 
For example, if the measurement process error is normally distributed, then the uncertainty is computed from  
 

 
1 1

2
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=
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 (12) 

 
where Φ-1() is the inverse normal distribution function.8   
 
Containment limits may be taken from manufacturer tolerance limits, stated expanded uncertainties obtained from 
calibration records or certificates, or statistical process control limits.  Containment probability can also be obtained 
from service history data, for example, as the number of observed in-tolerances, nin-tol, divided by the number of 
calibrations, N. 
 

                                                           
7 The uncertainty due to repeatability or random error in measurement is estimated from a sample of measurements taken over a 
time period short enough to eliminate variations due to systematic drift or other factors. 
8 The inverse normal distribution function can be found in statistics texts and in most spreadsheet programs.  
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n
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N
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In equation (12), the degrees of freedom are assumed to be infinite.  However, we know that heuristic estimates are 
not based on an "infinite" amount of knowledge.  As with Type A uncertainty estimates, the degrees of freedom 
quantify the amount of information that goes into the Type B uncertainty estimate. 
 
Therefore, if there is an uncertainty in the containment limits (e.g., ±L ± ∆L) or the containment probability (e.g., ±p 
± ∆p), then it becomes imperative to estimate the degrees of freedom.  Equation G.3 of the GUM provides a 
relationship for computing the degrees of freedom for a Type B uncertainty estimate 
 

 
[ ]
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where σ2[u(x)] is the variance in the uncertainty estimate, u(x), and ∆u(x) is the uncertainty in the uncertainty 
estimate.9  Hence, the degrees of freedom for a Type B estimate are inversely proportional to the square of the ratio 
of the uncertainty in the uncertainty divided by the uncertainty.   
 
While this approach is intuitively appealing, the GUM offers no advice about how to determine σ2[u(x)] or ∆u(x).  
Since the publication of the GUM, a methodology for determining σ2[u(x)] and computing the degrees of freedom 
for Type B estimates has been developed. 10  
 
Although the normal distribution is most often used to estimate uncertainty, other distributions also have limited 
applicability.  As previously discussed, many of these distributions are described by minimum bounding limits, ± a 
and 100% containment probability (i.e., p = 1).  Uncertainty equations for selected distributions are summarized in 
Table 1.  
 
GUM METHOD 
The GUM method evaluates and combines the variances of each measurement process error distribution.  The 
combined uncertainty is computed by taking the square-root of the combined variance.  The effective degrees of 
freedom for the combined uncertainty estimate are computed using the Welch-Satterthwaite relation.  A Taylor 
Series approximation is employed for analyzing multivariate measurements. 
 
Combined Uncertainty – Direct Measurements 
The variance addition is employed to obtain a method for combining uncertainties that accounts for possible 
correlation between errors.  To illustrate variance addition, let us consider the error in measurement of a quantity x 
that involves errors due to repeatability and measuring equipment bias, εrep and εbias.  
 
 εx =  εbias + εrep  
 
From variance addition, the uncertainty in εx is obtained from 
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 (14) 

 

                                                           
9 This equation assumes that the underlying error distribution is normal. 
10 Castrup, H.: “Estimating Category B Degrees of Freedom,” presented at the 2000 Measurement Science Conference, January 
21, 2001.  
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where biasuε  and repuε  are the measurement process uncertainties and cov( , )bias repε ε  is the covariance between 

εbias and εrep.   
 
The covariance of two random variables is a statistical assessment of their mutual dependence.  Covariances are 
rarely used explicitly.  Instead, we use the correlation coefficient, bias repε ερ , which is defined as 

 

 
cov( , ) cov( , )

var( ) var( )bias rep
bias rep

bias rep bias rep

bias rep u uε ε
ε ε

ε ε ε ε
ρ

ε ε
= =  (15) 

 
Equation (14) can then be expressed as 
 

 2 2
,2x bias rep bias repbias rep

u u u u uε ε ε ε εε ε ρ= + + . (16) 

 
The correlation coefficient is a dimensionless number ranging in value from -1 to 1.  If the two errors are statistically 
independent, then 0bias repε ερ =  and  

2 2
x bias rep

u u uε ε ε= + . 

 
If the two error sources are strongly correlated, then 1bias repε ερ =  and 

 

 2 2 2x bias rep bias repbias rep
u u u u u u uε ε ε ε εε ε= + + = + . 

 
When two errors are strongly correlated and compensate for one another, then 1bias repε ερ = −  and 

 
2 2 2x bias rep bias repbias rep

u u u u u u uε ε ε ε εε ε= + − = − . 

 
There typically aren't any correlations between measurement process errors for directly measured quantity.11  
Therefore, it is safe to assume that 0bias repε ερ = .  

 
Combined Uncertainty – Multivariate Measurements 
For multivariate measurements, a more general equation is used for the combined uncertainty 
 

  , , , ,

12 2

1 1 1 1 1
2 r i q j r i q jr

k k k l m
c r r q

r r q r i j
u a u a a u uε ε ε εε ρ

−

= = = + = =
= +∑ ∑ ∑ ∑ ∑ . (17) 

 
One can surmise from equation (17) that uncertainties are not always combined using the root sum square (RSS) 
method.  In the first term in equation (17), ruε  represents the combined uncertainty for each directly measured 
quantity and ar

 accounts for corresponding sensitivity coefficients.  The second term accounts for possible cross-
correlations between measurement process uncertainties for the rth and qth measured quantities, ,r iuε  and ,q juε . 

 

                                                           
11 However, cross-correlations between measurement process errors may exist for multivariate measurements.  
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Effective Degrees of Freedom 
Equation G.2b of the GUM provides the Welch-Satterthwaite relation as a means of computing the effective degrees 
of freedom for a combined uncertainty estimate, uc.  
 

 
4
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u
n u

i

ν

ν

=

∑
=

 (18) 

 
In the Welch-Satterthwaite relation, uc is computed assuming that no error correlations exist and that the sensitivity 
coefficients for measurement process uncertainties, ui, are all equal to one.  Another underlying assumption of 
Welch-Satterthwaite relation is that the constituent errors are normally distributed.12 
 
Confidence Limits 
The combined uncertainty, uc, and effective degrees of freedom, cuν , can be used to establish confidence limits that 

contain the true value, µ (estimated by the mean value x ), with some specified confidence level or probability, p. 
Confidence limits are expressed as  
 
 / 2, / 2,c cx t u x t uα ν α νµ− ≤ ≤ +  (19) 
 
where the multiplier is the t-statistic, tα/2,ν, and α = 1- p.  Values for / 2,tα ν , listed in Table 2, are obtained from the 
percentiles of the probability density function for the Student’s t distribution. 
 
As seen from equation (19), the width of the confidence limits or interval is dependent on three factors:  
 

1. the combined uncertainty   
2. the confidence level 
3. the degrees of freedom.  

 
Table 2.  Values of the t-statistic for the Student’s t Distribution13 

 α = 1- p where p is the probability (fraction) 
Degrees  

of Freedom 
ν 0.400 0.200 0.100 0.050 0.025 0.010 0.005 0.0005 
1 0.325 1.3764 3.078 6.314 12.706 31.821 63.657 636.619 
2 0.289 1.0607 1.886 2.920 4.303 6.965 9.925 31.598 
3 0.277 0.9785 1.638 2.353 3.182 4.541 5.841 12.924 
4 0.271 0.9410 1.533 2.132 2.776 3.747 4.604 8.610 
5 0.267 0.9195 1.476 2.015 2.571 3.365 4.032 6.869 
6 0.265 0.9057 1.440 1.943 2.447 3.145 3.707 5.959 
7 0.263 0.8960 1.415 1.895 2.365 2.998 3.499 5.408 
8 0.262 0.8889 1.397 1.860 2.306 2.896 3.355 5.041 
9 0.261 0.8834 1.383 1.833 2.262 2.821 3.250 4.781 

10 0.260 0.8791 1.372 1.812 2.228 2.764 3.169 4.587 
11 0.260 0.8755 1.363 1.796 2.201 2.718 3.106 4.437 
12 0.259 0.8726 1.356 1.782 2.179 2.681 3.055 4.318 
13 0.259 0.8702 1.350 1.771 2.160 2.650 3.012 4.221 
14 0.258 0.8681 1.345 1.761 2.145 2.624 2.977 4.140 
15 0.258 0.8662 1.341 1.753 2.131 2.602 2.947 4.073 

                                                           
12 More generalized forms of the Welch-Satterthwaite relation are derived in reference [5] for uncorrelated and correlated errors, 
as well as for multivariate measurements where the sensitivity coefficients may not equal one. 
13 From CRC Standard Mathematical Tables, 28th Edition, CRC Press, Inc., 2000. 
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 α = 1- p where p is the probability (fraction) 
Degrees  

of Freedom 
ν 0.400 0.200 0.100 0.050 0.025 0.010 0.005 0.0005 
16 0.258 0.8647 1.337 1.746 2.120 2.583 2.921 4.015 
17 0.257 0.8633 1.333 1.740 2.110 2.567 2.898 3.965 
18 0.27 0.8620 1.330 1.734 2.101 2.552 2.878 3.922 
19 0.257 0.8610 1.328 1.729 2.093 2.539 2.861 3.883 
20 0.257 0.8600 1.325 1.725 2.086 2.528 2.845 3.850 
21 0.257 0.8591 1.323 1.721 2.080 2.518 2.831 3.819 
22 0.256 0.8583 1.321 1.717 2.074 2.508 2.819 3.792 
23 0.256 0.8575 1.319 1.714 2.069 2.500 2.807 3.767 
24 0.256 0.8569 1.318 1.711 2.064 2.492 2.797 3.745 
25 0.256 0.8562 1.316 1.708 2.060 2.485 2.787 3.725 
26 0.256 0.8557 1.315 1.706 2.056 2.479 2.779 3.707 
27 0.256 0.8551 1.314 1.703 2.052 2.473 2.771 3.690 
28 0.256 0.8546 1.313 1.701 2.048 2.467 2.763 3.674 
29 0.256 0.8542 1.311 1.699 2.045 2.462 2.756 3.659 
30 0.256 0.8538 1.310 1.697 2.042 2.457 2.750 3.646 
40 0.256 0.8507 1.303 1.684 2.021 2.423 2.704 3.551 
60 0.254 0.8477 1.296 1.671 2.000 2.390 2.660 3.460 
120 0.254 0.8446 1.289 1.658 1.980 2.358 2.617 3.373 
∞ 0.253 0.8416 1.282 1.645 1.960 2.326 2.576 2.291 

 
Note: For two-sided confidence limits, the column in Table 2 with the value of α/2 must be selected.  

For example, given a probability of 0.95 and degrees of freedom of 20,  
 α/2 = 0.025 and t0.025,20 = 2.086.   

 
The major assumption is that the combined error follows a normal (infinite degrees of freedom) or Student's t 
distribution14 (finite degrees of freedom) results from the central limit theorem, which demonstrates that the 
combined error distribution converges toward the normal distribution as the number of constituent errors increases, 
regardless of their underlying distributions.  This is illustrated in Figure 1, where the combined probability 
distribution for three errors should take on a normal or Gaussian shape, regardless of the shape of the individual 
error distributions.  The actual shape of combined error distributions will be discussed further for the convolution 
and Monte Carlo methods. 

f(ε1)

ε1

f(ε2)

ε2

f(ε3)

ε3

f(εT)

εT

2εσ

1εσ

3εσ

Tεσ

 
Figure 1.  Combined Measurement Error Distribution 

                                                           
14 The Student’s t distribution is a symmetric distribution that approaches the normal distribution as the degrees of freedom 
approach infinity. 
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Expanded Uncertainty 
Expanded uncertainty is defined in the GUM as "the quantity defining an interval about the result of a measurement 
that may be expected to encompass a large fraction of the distribution of values that could reasonably be attributed 
to the measurand."  In other words, the expanded uncertainty is basically defined as a set of limits (± U) that are 
expected to contain the true value of the measurand.15   
 
 truex U x x U− ≤ ≤ +  (20) 
 
The expanded uncertainty is defined as U = kuc and is offered as an approximate confidence limit, in which a 
coverage factor, k, is used in place of the t-statistic. 
 
 c cx ku x kuµ− ≤ ≤ +  (21) 
 
In the application of equation (21), it is assumed that uc has infinite degrees of freedom and the combined error is 
normally distributed.  In such cases, the coverage factor is obtained from the last row of Table 2 for a given 
confidence level.  It is also a common practice to round the value of k to the nearest whole number.  
 
CONVOLUTION METHOD 
If two or more errors are statistically independent, then the distribution for the combined error can be obtained by 
convolution.  To illustrate the convolution method, let εx and εy be two statistically independent, continuously 
distributed measurement process errors with probability density functions f(εx) and g(εy), respectively.  The 
distribution for the combined error 
 ε = εx + εy (22) 
 
can be obtained from the relation 
 

 ( ) ( ) ( )x x xh f g dε ε ε ε ε
∞

−∞

= −∫ . (23) 

 
The convolution method is applicable for direct measurements where the measurement process errors are 
statistically independent (i.e., no error correlations).  Several examples showing how two or more error distributions 
are convolved are given in reference [4].  A few examples are provided here for illustration. 
 
Convolved Uniform Distributions 
First, we consider two statistically independent, uniformly distributed errors ε1 and ε2 with the following probability 
density functions 
 

 1
1

1 ,
( ) 2

0, otherwise ,

a a
f a

ε
ε

⎧ − ≤ ≤⎪= ⎨
⎪⎩

 (24) 

and  

 2
2

1 ,
( ) 2

0, otherwise.

b b
g b

ε
ε

⎧ − ≤ ≤⎪= ⎨
⎪⎩

 (25) 

 
where ± a and ± b are the minimum bounding limits for the respective error distributions.  Using equation (23), the 
convolved distribution is described by 
 

                                                           
15 The term expanded uncertainty and uncertainty are often used interchangeably.  This, of course, should be avoided because it 
can lead to incorrect inferences and miscommunications. 
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1 ( ) , ( ) ( )
4

1 , ( )
( ) 2

1 ( ) ,
4

0 . otherwise

a b a b b a
ab

b a b a
h b

a b b a b a
ab

ε ε

ε
ε

ε ε

⎧ + + − + ≤ ≤ − −⎪
⎪
⎪ − − ≤ ≤ −⎪= ⎨
⎪

+ − − ≤ ≤ +⎪
⎪
⎪⎩

 (26) 

 
When the error distributions have different 100% containment limits (b > a), the combined error distribution takes 
on a trapezoidal shape, as shown in Figure 2. 
 

f (ε)

ε

a

- (b+a) (b+a)

- a

0  
Figure 2.  Convolved Distribution for Two Uniformly Distributed Errors, b > a. 

 
When the error distributions have equal 100% containment limits (b = a),  the combined error distribution becomes 
the familiar triangular distribution shown in Figure 3. 
 

0

f (ε)

ε
- (b+a) (b+a)  

Figure 3.  Convolved Distribution for Two Uniformly Distributed Errors, b = a. 
 
Now, let us consider three statistically independent uniformly distributed errors ε1, ε2 and ε3 with the following 
probability density functions 
 

1
1

1 ,
( ) 2

0, otherwise ,

a a
f a

ε
ε

⎧ − ≤ ≤⎪= ⎨
⎪⎩

  ,   2
2

1 ,
( ) 2

0, otherwise ,

b b
g b

ε
ε

⎧ − ≤ ≤⎪= ⎨
⎪⎩

  and  3
3

1 ,
( ) 2

0, otherwise.

c c
w c

ε
ε

⎧ − ≤ ≤⎪= ⎨
⎪⎩

 

 
A number of combinations of relative sizes of the 100% minimum bounding limits ± a, ± b and ± c are possible.  
One case, where  b > a and c > a + b, will be explicitly constructed.  The probability density function for the 
convolved error distribution is broken up into six pieces: 
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21( ) ( ) , ( ) ( )
8

h c b a a b c b c a
abc

ε ε ε= + + + − + + ≤ ≤ − − −  

1( ) ( ) , ( ) ( )
4

h a b b c a b c a
ab

ε ε ε= + + − − − ≤ ≤ − −  

2 2 21 1( ) ( ) ( ) ( ) , ( ) ( )
8 2

h a b c a b c b c a b c a
abc

ε ε ε⎡ ⎤= + + + − + − − − − ≤ + −⎢ ⎥⎣ ⎦
 

1( ) , ( ) ( )
2

h b c a a b c
a

ε ε= + − ≤ ≤ − +  

21 1( ) 4 ( ) , ( ) ( )
8 2

h bc b c a a b c a b c
abc

ε ε ε⎡ ⎤= − + − + − + ≤ ≤ − −⎢ ⎥⎣ ⎦
 

21( ) ( ) , ( )
8

h a b c b c a a b c
abc

ε ε ε= + + − − + ≤ ≤ + + . 

 
The combined error distribution, shown in Figure 4, begins to look more like the normal distribution.  Actually, its 
shape is that of the utility distribution.16  The convolved distribution begins to look even more normally distributed 
in cases where c > b and b = a and for cases where c = b = a.  
 

f (ε)

ε
- (c+b+a) (c+b+a)0

a- a

 
Figure 4.  Convolved Distribution for Three Uniformly Distributed Errors, b > a and c > a + b 

 
As previously stated, the uniform distribution is applicable for only a few measurement processes errors.  For direct 
measurement scenarios, it is unlikely to have more than a couple of measurement process errors that follow a 
uniform distribution.17  The primary purpose of convolving three uniform distributions is to illustrate that the central 
limit theorem holds true, regardless of the shape of the individual error distributions. 
 
Convolved Uniform and Normal Distributions 
The normal distribution applies to a wide variety of measurement process errors, so let us consider two statistically 
independent errors, one that is uniformly distributed and the other normally distributed.  In this example, the 100% 
minimum bounding limits for the uniform distribution are ± 3.5 and the standard deviation of the normal distribution 
is 1.   
 
Consequently, the standard deviation of the uniform distribution is approximately twice that of the normal 
distribution (σU ≅ 2σN).  The convolved distribution is shown in Figure 5.  If additional normally distributed 
measurement process errors were evaluated, the convolved error distribution would exhibit a more Gaussian or 
normal shape. 

                                                           
16 See reference [4] for a description of the utility function and its probability density function. 
17 Two uniformly distributed errors may result from the digital resolution of a unit under test parameter and a measurement 
reference. 
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f (ε)

ε
0  

Figure 5.  Convolved Distribution for Uniformly and Normally Distributed Errors, σU ≅ 2σN  
 
Confidence Limits 
The confidence limits are computed via numerical integration of the combined error distribution for a given percent 
confidence level (% C) or probability (p = C/100).  In this case, numerical iteration using a bisection method can be 
employed.18 
 
Expanded Uncertainty 
The expanded uncertainty, ± U, is computed from the standard deviation of the convolved error distribution and the 
specified coverage factor (usually k = 2). 
 
 ( )cU k u± = ± ×  (27) 
 
MONTE CARLO METHOD 
Monte Carlo simulation is another method used to combine error distributions.  As with the previous two methods, 
the appropriate distribution must be selected for each measurement process error.  The standard deviation or the 
error containment limits and containment probability must also be known for each error distribution.  The Monte 
Carlo method is also applicable for multivariate measurement scenarios.   
 
The Monte Carlo method employs repeated computation of random or pseudo-random numbers to simulate and 
combine deviates for individual error distributions.  The combined error distribution is obtained by adding the 
simulated data points for all of the distributions.  The Monte Carlo method can be used to analyze measurements 
with correlated errors.  Correlation coefficients equal to unity can be easily accommodated, but generalized cases of 
statistically correlated errors are considerably more difficult to implement.  
 
Simulated Uniform and Normal Distributions 
We will evaluate the uniform and normal distributions previously described, in which the standard deviation of the 
uniform distribution is approximately twice that of the normal distribution.  Because Monte Carlo simulation 
involves the generation of pseudo-random values, the results are subject to statistical fluctuations, as seen in each 
distribution plot.   
 
The scatter in the data points is affected by the number of simulated values (or trials) that are generated19 and the bin 
size used to sort them.   The frequency or probability distribution is determined from the number of values that fall 
in each bin.  Bin size is usually set equal to the maximum expected value minus the minimum expected value 
divided by the number of bins. 
 
The larger the number of simulated values (or trials), the better the agreement between the data points and the 
underlying distribution.  The simulated uniform and normal distributions shown in Figures 6 and 7, respectively, 
were each generated from 10,000 simulated trials using the MS Excel Random Number Generator analysis tool.  
                                                           
18 Numerical Recipes in Fortran, 2nd Edition, Cambridge University Press, 1992. 
19 A minimum of 10,000 simulated deviates are required for each error distribution to obtain meaningful results.    
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The data were then sorted into 60 bins to obtain their relative frequency of occurrence. 
 

f (ε)

ε
0  

Figure 6.  Simulated Uniform Distribution 
 

f (ε)

0
ε

 
Figure 7.  Simulated Normal Distribution 

 
Combined Uniform and Normal Distribution 
The combined distribution for the simulated uniform and normal shown in Figures 6 and 7 was obtained by adding 
pairs of simulated data points.  To generate the necessary frequency data, the number of bins was increased from 60 
to 80 to maintain the same bin size that was used for the uniform and normal distributions.  The combined 
distribution shown in Figure 8 looks very similar to the convolved distribution shown in Figure 5.  This is expected, 
since the same standard deviations were used for the underlying uniform and normal distributions (i.e.,σU ≅ 2σN).   
 

f (ε)

ε
0  

Figure 8.  Combined Uniform and Normal Distributions, σU ≅ 2σN 
 
Consequently, the standard deviation for the combined distribution should be in close agreement with the standard 
deviation of the convolved distribution.  In both analyses,  the standard deviation of the normal distribution is σN = 1 
and the standard deviation of the uniform distribution is  
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3.5 2.0207

3Uσ = = . 

 
The standard deviation of the convolved distribution is computed to be 2.255 and the standard deviation for the 
combined distribution shown in Figure 8 is computed to be 2.252.  For comparison, the uncertainty (i.e., standard 
deviation) for the combined error was also computed using the GUM method and its value was computed to be 
2.255. 
 
Confidence Limits 
The confidence limits are computed via numerical integration of the combined error distribution for a given percent 
confidence level (% C) or probability (p = C/100).  In this case, numerical iteration using a bisection method can be 
employed. 
 
Expanded Uncertainty 
The expanded uncertainty, ± U, is computed from the standard deviation of the combined error distribution and the 
specified coverage factor (usually k = 2), as shown in equation (27). 
 
DIRECT MEASUREMENT SCENARIOS 
Four direct measurement scenarios described in reference [7] were analyzed using the GUM, convolution and Monte 
Carlo methods.20  The GUM analyses for each scenario are summarized in the following sections.  The GUM 
analysis results are then compared to the combined uncertainties and confidence limits obtained using the 
convolution and Monte Carlo methods. 
 
Scenario 1:  Calibration of Mass using Precision Balance 
This measurement scenario consists of calibrating a 30 gm mass with a precision balance. In this scenario, the 
following measurement process errors are taken into account: 
 

• Bias in the precision balance, eMTE,b. 
• Error due to the digital resolution of the balance, eMTE,res. 
• Environmental factors error resulting from the  buoyancy correction, eenv. 

 
The combined measurement error is 
 

, ,MTE MTEcal b res enve e eε = + +  
where 

, 1 2 UUTUUT airenv enve e c e c eρ ρ= = +  

 
and aireρ  and 

UUT
eρ  are the errors in the air and UUT densities, respectively.   

 
In this analysis, the error in the air density and the error in the density of the UUT mass are considered to be 
uncorrelated.  The coefficients c1 and c2 are sensitivity coefficients that determine the relative contribution of aireρ  

and 
UUT

eρ  to eenv.  The sensitivity coefficients are defined and computed in reference [7].  The probability 
distributions, limits, confidence levels and uncertainties for each measurement process error are summarized in 
Table 3. 
 

                                                           
20 For simplicity, repeatability is not included as a measurement process error in these analyses. 
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Table 3.  Summary of Scenario 1 Uncertainty Estimates  
 

Error 
Source 

 
Error  
Limits 

Confidence 
Level 
(%) 

 
Error 

Distribution

Degrees 
of 

Freedom 

 
Analysis

Type 

 
Standard 

Uncertainty 

 
Sensitivity 
Coefficient 

eMTE,b ± 0.12 gm 95.00 Normal Infinite B 6.12×10-2 gm 1 
eres ± 0.005 gm 100.00 Uniform Infinite B 2.9×10-3 gm 1 

aireρ   ± 3.6×10-5  gm/cm3 95.00 Normal Infinite B 1.84×10-6 gm/cm3 -0.18 cm3  

UUTeρ  ± 0.15 gm/cm3 95.00 Normal Infinite B 0.077 gm/cm3 -5.1×10-4 cm3  
 
Using the GUM method, the combined uncertainty equation is 
 

( ) ( )

2 2 2 2 2 2
, 1 2,

2 22 2
, 1 2,

UUT

UUT

MTEMTE air

MTEMTE air

cal resb

resb

u u u c u c u

u u c u c u

ρ ρ

ρ ρ

= + + +

= + + +

. 

 
Using the data in Table 3, the combined uncertainty is computed to be 
 

( ) ( ) ( ) ( )2 2 2 22 3 6 4

3 6 10 13

3 2

6.12 10 2.9 10 0.18 1.84 10 5.1 10 0.077 gm

3.75 10 8.41 10 1.81 10 1.08 10 gm

3.75 10 gm 6.12 10 gm.

calu − − − −

− − − −

− −

= × + × + − × × + − × ×

= × + × + × + ×

= × = ×

 

 
Using the Welch-Satterthwaite relation, the combined degrees of freedom are computed to be infinite. 
 
Scenario 2:  Calibration of an Analog Micrometer using a Gage Block 
This measurement scenario consists of calibrating an analog micrometer with a 10 mm gage block reference.  In the 
micrometer calibration scenario, we must account for the following measurement process errors: 
 

• Bias in the value of the 10 mm gage block length, eMTE,b. 
• Error associated with the analog resolution of the micrometer, eUUT,res. 
• Bias resulting from the operator’s use of the micrometer to measure the gage block, eUUT,op. 
• Environmental factors error resulting from the thermal expansion correction, eenv. 

 
The combined measurement error is 
 
 , , ,MTE UUT UUTcal b res op enve e e eε = + + +  
where  

T Tenve c e∆ ∆=  

and c∆T is the sensitivity coefficient and e∆T is the error due to the environmental temperature variation.   The 
sensitivity coefficient, c∆T , is defined and computed in reference [7].   
 
Using the GUM method, the combined uncertainty equation is 
 

2 2 2 2 2
, ,, .UUT UUTMTEcal res op T Tbu u u u c u∆ ∆= + + +  
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The probability distributions, limits, confidence levels and standard uncertainties for each measurement process 
error are summarized in Table 4. 
 

Table 4.  Summary of Scenario 2 Uncertainty Estimates 
 

Error 
Source 

 
Error 
Limits 

Conf. 
Level 
(%) 

 
Error 

Distribution 

Degrees 
of 

Freedom 

 
Analysis

Type 

 
Standard 

Uncertainty 

 
Sensitivity 
Coefficient 

eMTE,b + 0.18, -0.13 µm 90.00 Lognormal Infinite B 0.09 µm 1 
eUUT,res ± 5.0 µm 95.00 Normal Infinite B 2.6 µm 1 
eUUT,op ± 5.0 µm 95.00 Normal Infinite B 2.6 µm 1 
e∆T ± 1 °C 95.00 Normal Infinite B 0.51 °C -5.9×10-2 µm/°C  

 
Using the data in Table 4, the combined uncertainty is computed to be 
 

( ) ( ) ( ) ( )22 2 2 20.09 2.6 2.6 5.9 10 0.51 µm

0.0081 6.76 6.76 0.0009 µm

13.53µm 3.68µm

calu −= + + + − × ×

= + + +

= =

 

 
Using the Welch-Satterthwaite relation, the combined degrees of freedom are computed to be infinite. 
 
Scenario 3:  Calibration of an End Gauge using a Comparator 
This measurement scenario consists of calibrating an end gauge, with a nominal length of 50 mm, using an end 
gauge standard of the same nominal length.  The calibration process consists of measuring and recording the 
difference between the two end gauges using a comparator apparatus. 
 
In this calibration scenario, the following measurement process errors are taken into account: 
 

• Bias in the value of the 50 mm end gage standard length, eMTE,b. 
• Bias of the comparator, ec,b 
• Digital Resolution error for the comparator, eres. 
• Operator bias, eop. 
• Environmental factors error resulting from the thermal expansion correction, eenv. 

 
The combined measurement error is 
 

, , ,( )UUT MTE MTEcal m m op be eε ε ε= − + −  
where 

, , , ,MTE MTE MTEm c b res enve e eε = + +  
and 

, , , ,UUT UUT UUTm c b res enve e eε = + + . 
 
The expression for εcal can be rewritten as 
 

,MTEcal res env op be e e eε = + + −  
where 

, ,UUT MTEres res rese e e= −  
 

, , 1 2UUT MTEenv env env Te e e c e c eα∆= − = +  
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and Te∆  is the error in the correction temperature and eα  is the error in the coefficient of thermal expansion  for 
the UUT and reference ring gauges.   
 
In this analysis, the correction temperature error and the coefficient of thermal expansion error are considered to be 
uncorrelated.  The coefficients c1 and c2 are sensitivity coefficients that determine the relative contribution of Te∆  
and eα  to the environmental correction error eenv.  The sensitivity coefficients are defined and computed in 
reference [7].   
 
The resolution uncertainty for the UUT and MTE are equal to the resolution uncertainty of the comparator, uUUT,res = 
uMTE,res =  uc,res.  In addition, the resolution error for the UUT and MTE are uncorrelated, so that ρres = 0.  Using the 
GUM method, the combined uncertainty equation is 
 

( )

2 2 2 2 2 2 2
, 1 21 2 ,

22 2 2
, 1 2 ,

2 2

2

T MTE

T MTE

cal c res opT b

c res op b

u u c u c u c c u u u u

u c u c u u u

α α

α

∆

∆

∆= + + + + +

= + + + +
. 

 
The probability distributions, limits, confidence levels and uncertainties for each measurement process error are 
summarized in Table 5. 
 

Table 5.  Summary of Scenario 3 Uncertainty Estimates 

Error 
Source 

 
Error  
Limits 

Conf. 
Level 
(%) 

 
Error 

Distribution 

Degrees 
of 

Freedom 

 
Analysis

Type 

Standard 
Uncertainty 

(nm) 

 
Sensitivity 
Coefficient 

ec,res ± 1 nm 100.0 Uniform Infinite B 0.577 nm 1 
e∆T ± 0.5 °C 95.00 Normal Infinite B 0.255 °C 2.47×10-3 nm/°C 
eα ± 0.5×10-6 /°C 95.00 Normal Infinite B 0.255×10-6 /°C - 21.5 °C•nm  
eop ± 5 nm 95.00 Normal Infinite B 2.55 nm 1 
eMTE,b   95.00 Normal Infinite A,B 25 nm 1 

 
Using the data in Table 5, the combined uncertainty is computed to be 
 

( ) ( ) ( )2 2 23 2 6 2

7 11

2 0.577 (2.47 10 0.255) (21.5 0.255 10 ) 2.55 25 nm

0.67 3.97 10 3.01 10 6.50 625 nm

632.2 nm 25.1 nm

calu − −

− −

= × + × × + × × + +

= + × + × + +

= =

 

 
Using the Welch-Satterthwaite relation, the combined degrees of freedom are computed to be infinite. 
 
Scenario 4:  Calibration of a Digital Thermometer 
This measurement scenario consists of calibrating a digital thermometer at 100 °C using an oven and an analog 
temperature reference.  The oven temperature is adjusted using its internal temperature probe and the readings from 
the thermometer and temperature reference are recorded. 
 
In the thermometer calibration scenario, the following measurement process errors must be taken into account: 
 

• Bias of the temperature reference, eMTE,b. 
• Analog resolution error for the temperature reference, eMTE,res. 
• Digital resolution error for the thermometer, eUUT,res. 
• Error due to the non-uniformity of the oven temperature, eenv. 
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In this analysis, the short-term effect of oven stability is not included as part of the environmental factors error, eenv.   
 
The combined measurement error is 
 

, , ,( ) .UUT MTE MTEecal res res b enve e eε = − − +  
 
Using the GUM method, the combined uncertainty equation is 
 

2 2 2 2
, ,, .UUT MTEMTEcal res res envbu u u u u= + + +  

 
The probability distributions, limits, confidence levels and standard uncertainties for each measurement process 
error are summarized in Table 6. 
 

Table 6.  Summary of Scenario 4 Uncertainty Estimates21 
 

Error 
Source 

Error 
Limits 
(°C) 

Confidence 
Level 
(%) 

 
Error 

Distribution 

Degrees  
of 

Freedom 

 
Analysis 

Type 

Standard 
Uncertainty 

(°C) 

 
Sensitivity 
Coefficient 

eMTE,b    Normal infinite A,B 0.02 1 
eUUT,res ± 1 100.00 Uniform infinite B 0.577 1 
eMTE,res ± 0.25 95.00 Normal infinite B 0.128 1 
eenv ± 1 95.00 Normal Infinite B 0.51 1 

 
Using the data in Table 6, the combined uncertainty is computed to be 
 

( ) ( ) ( ) ( )2 2 2 20.02 0.577 0.128 0.51 C

0.0004 0.3329 0.0163 0.2603 C

0.6099 C 0.78 C

calu = + + + °

= + + + °

= ° = °

 

 
Using the Welch-Satterthwaite relation, the combined degrees of freedom are computed to be infinite. 
 
Comparison to Convolution and Monte Carlo Analysis Results 
The four direct measurement scenarios were also analyzed using the convolution and Monte Carlo methods.  The 
convolution analyses were conducted using the Convolver application developed by Dr. H. Castrup.22  The Monte 
Carlo analyses were conducted using the MS Excel Random Number Generator analysis tool.  Each error 
distribution was generated from 10,000 simulated trials that were sorted into 100 bins to obtain their relative 
frequency of occurrence. 
 
The combined uncertainties and confidence limits computed using the GUM, convolution and Monte Carlo methods 
are summarized in Table 7.  A couple of extra decimal digits were included to highlight any differences in the 
computed values.  Of the three methods, convolution is considered to be the most rigorous approach for obtaining 
combined uncertainty estimates and confidence limits for the four direct measurement scenarios under 
consideration.   
 
The combined uncertainties obtained from the GUM and Monte Carlo methods are in very close agreement with 
corresponding values obtained with the convolution method.  The 95% confidence limits are also in close agreement 
for measurement scenarios 1 through 3.  The 95% confidence limits computed with the GUM and Monte Carlo 
                                                           
21 For the purposes of illustration, the error limits for eUUT,res, eMTE,res, and eenv were modified from those in reference [7] to 
increase the relative contribution of the uniformly distributed UUT resolution error. 
22 Convolver, ©2005-2009, Integrated Sciences Group, All Rights Reserved. 
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methods are comparable for measurement scenario 4, but are significantly higher than the limits obtained via 
convolution.   The reason for this is evident from the combined error distributions shown in Figure 9, in which the 
GUM plot depicts a normal distribution with a standard deviation equal to the combined uncertainty.  The Monte 
Carlo data follow the normal distribution more closely than the actual (convolved) error distribution.  The smaller 
95% confidence limits for the convolved error distribution are attributable to its distinctly different shape. 
 

Table 7.  Summary of Measurement Scenario Analysis Results 
 
 

Meas. 
Scenario 

 
GUM 

Combined 
Uncertainty 

 
Convolution 
Combined 

Uncertainty 

 
Monte Carlo 

Combined 
Uncertainty 

GUM 
Confidence  

Limits 
(95%) 

Convolution 
Confidence  

Limits 
(95%) 

Monte Carlo 
Confidence  

Limits 
(95%) 

1  0.0612 gm 0.0613 gm 0.0605 gm ± 0.120 gm ± 0.117 gm ± 0.115 gm 
2 3.678 µm 3.678 µm 3.682 µm ± 7.213 µm ± 7.184 µm ± 7.140 µm 
3 25.143 nm 25.136 nm 25.052 nm ± 49.280 nm ± 49.105 nm ± 49.000 nm 
4 0.781 °C 0.781 °C 0.785 °C ± 1.531 °C ± 1.228 °C ± 1.470 °C 

 
f (ε)

0
ε

Convolution
GUM

Monte Carlo

 
Figure 9.  Combined Error Distributions for Measurement Scenario 4 

 
CONCLUSIONS 
The GUM, convolution and Monte Carlo methods were evaluated for estimating the uncertainty or standard 
deviation of a combined error distribution comprised of distributions for individual measurement processes errors.   
The three methods were used to compute and compare the combined uncertainty estimates and confidence limits for 
four direct measurement scenarios involving uncorrelated errors.  The convolution method is considered to be the 
most rigorous approach for obtaining combined uncertainty estimates and confidence limits for these direct 
measurement scenarios.   
 
In general, all three methods are considered to provide comparable analysis results. This is especially true in cases 
where the combined error distribution closely approaches that of the normal distribution.  The combined 
uncertainties obtained from the GUM and Monte Carlo methods were found to be in very close agreement with the 
combined uncertainties obtained with the convolution method.  Similarly, the 95% confidence limits computed from 
all three methods were in close agreement for measurement scenarios 1 through 3. For measurement scenario 4, 
GUM and Monte Carlo methods computed comparable 95% confidence limits, while the significantly different 
shape of the convolved error distribution resulted in smaller limits. 
 
All three methods can be used to analyze direct and multivariate measurements in which all errors are uncorrelated.   
The GUM and Monte Carlo methods can also be used to analyze direct and multivariate measurements involving 
uncorrelated errors.  The GUM and Monte Carlo methods can also accommodate correlated errors.  However, 
applying the Monte Carlo method to cases were ρ ≠ 1 is a challenging endeavor.  Additional studies are needed to 
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evaluate and compare these methods for multivariate measurements, with and without correlated errors. 
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