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Abstract - Methods for estimating the uncertainty in the bias of reference parameters or artifacts are presented.  The 
methods are cognizant of the fact that, although such biases persist from measurement to measurement within a 
given measurement session, they are, nevertheless, random variables that follow statistical distributions.  
Accordingly, the standard uncertainty due to measurement bias can be estimated by equating it with the standard 
deviation of the bias distribution.  Since the measurement bias of a reference is a dynamic quantity, subject to 
change over the calibration interval, both uncertainty growth and parameter interval analysis are also discussed. 
 

INTRODUCTION 
Measurements are accompanied by measurement errors.  The uncertainty in the sign and magnitude of a 
measurement error is called measurement uncertainty.  To put this statement in mathematical terms, errors that 
occur in measurement are random variables that follow statistical distributions.  The uncertainty due to a specific 
error is equal to the standard deviation of the error distribution.2 
 
The total error in a measurement is comprised of errors from several possible sources.  Among these are parameter 
error, random error, resolution error, operator bias, sampling error, environmental error, etc.  Each error follows a 
statistical distribution with a standard deviation.  Accordingly, there is an uncertainty associated with each error 
source.  The total uncertainty in a measurement is composed of these uncertainties. 
 

Parameter Error 
A device parameter can be thought of as a discrete function that is assigned a tolerance specification.  For single-
parameter devices, such as gage blocks, the parameter specification is synonymous with the device specification.  
For multi-parameter devices, each parameter has its own function and specification.  For example, the 10 vDC 
function of a multimeter constitutes a parameter.  With regard to functions that are specified over a range of values, 
it should be noted that, for purposes of uncertainty analysis, each measured point within the range constitutes a 
separate parameter. 
 
Parameter error is a deviation of a device-sensed or device-generated value from an underlying true value.  To 
elaborate, if the device parameter measures the value of a quantity, the parameter error is the difference between the 
true value of the quantity and the value sensed by the parameter.  If the device provides an output and has a nominal 

1 Proc. NCSLI Workshop & Symposium, July 29-August 2, 2001, Washington, DC. 
2 The standard deviation should not be confused with the “expanded uncertainty,” which is equal to the standard 
deviation multiplied by a constant referred to as a “coverage factor.”  In some circles, it is customary to employ an 
arbitrary fixed number (e.g., 2 or 3) for this quantity.  In this paper, coverage factors are t-statistics determined from 
confidence levels and degrees of freedom. 

                                                           



or reading value, the parameter error is the difference between the true value of the output and the nominal or 
reading value. 
 
An example of the first kind of parameter error is the difference between the true value of a gage block and the value 
measured by a micrometer.  An example of the second kind of parameter error is the difference between the true 
frequency produced by a signal generator and the value that is indicated by the generator dial or readout. 
 

Parameter Bias 
Parameter error is composed of random error in the device-sensed or device-generated value and a systematic 
component called parameter bias.  Parameter bias is an error component that persists from measurement to 
measurement during a “measurement session.”  Parameter bias excludes resolution error, random error, operator bias 
and other sources of error that are not properties of the parameter.3 
 
Estimating the uncertainty due to parameter bias is the primary subject of this article. 
 

Parameter Bias Composition 
Parameter bias may include contributions from systematic long-term variations and from random stresses 
encountered during usage, calibration or storage.  Systematic long-term variations are usually referred to as 
“parameter drift.”  Changes due to random stresses are referred to as “random variations.”  Parameter drift may be 
linear or nonlinear.  The rate of change in parameter value due to drift is called the drift rate. 
 
The specific bias that a parameter may have at any given time depends on the following variables 

1. The initial bias of the parameter following testing or calibration, referred to as the beginning-of-period 
(BOP) bias. 

2. The parameter’s drift rate and the time elapsed since testing or calibration. 
3. The sum of random variations. 

 

Parameter Bias Uncertainty 
To reiterate from above, the uncertainty in the bias of a parameter consists of the uncertainty due to drift, the 
uncertainty due to random variations and the uncertainty due to testing or calibration.  If we let t represent the time 
elapsed since testing or calibration, the error model is 
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where 
εdrift(t) = parameter bias due to drift, 
εir = random variation due to the ith random stress experienced since testing or calibration, 
n(t) = number of random variations occurring over time t, 
εBOP = bias of the parameter due to testing or calibration. 

 
The uncertainty in the bias of a parameter is obtained by taking the statistical variance of Eq. (1) 
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3 For purposes of discussion, a measurement session is considered to be an activity in which a measurement or 
sample of measurements is taken under fixed conditions, usually for a period of time measured in seconds, minutes 
or, at most, hours. 

                                                           



where it is assumed that errors due to drift, random variations and testing or calibration are statistically 
independent.4 
 

Drift Uncertainty 
Parameter drift may be represented by a mathematical function of time, characterized by coefficients.  For example, 
if parameter drift is linear with time, the function could be written 

 ( )drift t btε = , (3) 

where b is a coefficient, and t is the time elapsed since testing or calibration.  For the function defined in Eq. (3), the 
coefficient b is the parameter drift rate. 
 
The uncertainty due to drift is obtained by taking the variance of Eq. (3) 

 2 2 2 2 2( )drift b tu t t u b u= + . (4) 

The uncertainty ut is normally not a factor, since we either know the elapsed time or are endeavoring to compute 
bias uncertainty as a function of time, in which case t is a known input variable.  The uncertainty ub is the 
uncertainty in the parameter’s drift rate.  In cases where this drift rate has been determined experimentally, what we 
usually have at hand is a regression estimate for b, together with a regression variance that expresses the uncertainty 
in b 

( )2 varbu b . 

This topic will be discussed in detail later in the paper. 
 
Compensation for Drift 
If the drift of a parameter has been successfully modeled and the coefficients of the model have been obtained by 
regression or other methods, the parameter value can be corrected by taking the estimated drift into account.  While 
this may reduce the parameter error or bias, the uncertainty in the correction udrift must still be accounted for.  For 
our simple linear model, this uncertainty is estimated by ub above.  More general and complex models will be 
encountered later. 
 

Random Effects Uncertainty – Process Variation 
In addition to parameter variations due to drift, we have parameter variations due to random effects.  The random 
effects variations may be due to responses to usage stress, shipping and handling, energizing, etc.  Again, the sign 
and magnitude of these variations are unknown.  The uncertainty in the sign and magnitude of such a random 
variation constitutes the long-term random uncertainty or process variation.5 
 
Combined Random and Drift Uncertainty – An Analogy 
Imagine that you are present at a demonstration of Brownian motion in which a bottle of perfume is uncorked, and 
the times required for the perfume aroma to reach different parts of the room are measured.  At time t = 0 (when the 
bottle is uncorked) a given perfume molecule can be said to be contained within a fairly localized neighborhood.  As 
time passes, the probability that the molecule is contained within this neighborhood becomes comparatively small.  
If the room were of infinite volume, this probability would eventually vanish to zero. 
 
For parameters with no drift characteristic, variations in parameter value due to random effects are analogous to 
changes in molecule location due to Brownian motion.  At t = 0 (immediately following testing or calibration), the 
parameter value can be said to be contained within a neighborhood whose dimensions are set by the uncertainty in 

4 In developing the variance due to random error, it is important to bear in mind that n is a random variable.  Hence, 
the uncertainty ur is defined according to 

,i rru u εΣ= , rather than 
,

2 2
i rru uε= Σ . 

5 This is not the random uncertainty in measurement, which is due to short-term random variations that occur during 
measurement. 

                                                           



the testing or calibration process.  As t increases, the probability of this containment grows smaller.  In other words, 
the uncertainty in the parameter’s value increases.  This phenomenon is called uncertainty growth [1-3]. 
 
We now include parameter drift.  Suppose that the perfume experiment is conducted in a tunnel, and that there is a 
constant air flow present.  In this case, perfume molecules again exhibit random Brownian motion, but there is also a 
systematic motion due to the air flow.  If we compare perfume aroma arrival times with and without air flow, we can 
estimate the drift rate, or, equivalently, the rate of air flow.  Of course, this estimate will be subject to the uncertainty 
of the time and distance measurements and of our sensitivity to the perfume scent. 
 
The foregoing random and systematic variations are analogous to those exhibited by device parameters.  We 
sometimes estimate drift based on the performance of an individual device and sometimes obtain the estimate based 
on the performance of a sample of devices drawn randomly from a population.  The latter approach is analogous to 
the perfume aroma drift estimate in that, in the perfume experiment, we are not measuring the drift of a specific 
molecule.  We are instead measuring the drift of the molecule population. 
 

ANALYSIS OF BIAS UNCERTAINTY 
The uncertainty in the bias of a parameter can be estimated as a function of time elapsed since testing or calibration.  
The estimate may be obtained using variables data or attributes data. 
 

Variables Data Analysis 
Variables data obtained by periodic calibration of equipment parameters can be used to estimate bias uncertainty.  
The scenario is one in which the “as-found” parameter value measured at each calibration is compared to the “as-
left” value measured at the preceding calibration.  By plotting the difference between as-found and as-left values as 
a function of the time elapsed between calibrations, we can develop projections of uncertainty growth over time. 
 
One method of analysis that has been found to be useful in this regard is regression analysis.  With regression 
analysis, each point that is entered in an analysis has associated with it the uncertainty of the measurement process 
that produced its value.  In addition to the measurement process uncertainties, the results of uncertainty growth 
analysis will include other uncertainties due to both the regression fit and to random process variation over time.  
The latter two contributions are estimated as a byproduct of the analysis. 
 
Estimating the Bias Uncertainty 
With regression analysis applied to variables data, udrift, ur and uBOP can be estimated using the regression model 

 y(t) = a + bt, (5) 

where a and b are coefficients that are estimated, t represents the time elapsed between calibrations, and y(t) 
represents the difference between as-found and as-left values at time t.  With this model, the uncertainty at any given 
time t is given by the expression 

 2 2var( ) var( ) 2 cov( , )biasu a t b t a b= + + . (6) 

Comparison with the components of ubias in Eq. (2) shows that 
2 var( )BOPu a= , 

2 2( ) var( )driftu t t b= , 
and 

2 ( ) 2 cov( , )ru t t a b= . 

This is an interesting result.  One of the reliability models employed in attributes data calibration interval analysis, to 
be discussed later, is the random walk model.  This model assumes that parameter values change randomly with 
respect to direction (sign) and magnitude.  In the course of its derivation, the uncertainty or standard deviation of the 
parameter distribution, ur(t), turns out to be proportional to the square root of the time elapsed between calibrations.  



So, by virtue of the linear model that we have chosen for variables data analysis, we end up with the same result, 
i.e., ( )ru t t . 
 
Before moving on to the estimation of regression coefficients a and b, it should be mentioned that it is important to 
bear in mind that the variance and covariance terms of ubias include uncertainty contributions from both the 
regression fit and from the uncertainties in the measured as-found vs. as-left differences that are entered into the 
analysis.  These contributions will become apparent in the discussion on estimating the variances.  They are 
portrayed in Figure 1.   
 
Figure 1 shows the estimated bias drift over time, the uncertainty due to random effects6 (process variation) and the 
measuring process uncertainty for each measured deviation.  The uncertainty udrift(t) is indicated by the upper and 
lower 95% regression confidence limits.  The random uncertainty ur(t) is estimated as 0.002061 cm.  The measuring 
process uncertainties are displayed in the form of upper and lower one-sigma error bars around each measured 
difference. 

 
Figure 1.  Control Chart for Deviations vs. Time.  For the analysis shown, the chart indicates a slight negative drift 
in parameter bias as a function of time.  Also shown is a standard deviation of 0.002061 cm due to random variations, 
labeled “Weighted Process Var.”  The measuring process uncertainties for each deviation are shown as ± one-sigma 
error bars.  The screen was generated with SPCView [4]. 

 

6 As indicated earlier, this should not be confused with the uncertainty due to random error in a measurement.  This 
error contributes to the measurement process uncertainty shown for each plotted point.  The random effects alluded 
to in the present discussion are experienced over a history of such measurements.  They contribute to the uncertainty 
in projecting parameter value vs. time. 

                                                           



Estimating the Regression Coefficients 
The regression coefficients are determined by minimizing a statistic called the residual sum of squares or RSS, given 
by7 

 ( )2

1

n

i i i
i

RSS w y a bt
=

= − −∑ , (7) 

where yi is the observed difference between the ith as-found and as-left measurement, n is the number of observed 
differences, and ti is the associated time elapsed between the ith difference.  The variable wi is the ith weighting 
factor or, simply, the ith “weight.”  The ith weighting factor is given by 

 2i
i
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where ui is the measurement process uncertainty for the ith as-found/as-left difference, and 
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Minimizing RSS produces two equations called the “normal equations” 

 21 ( )( ) ( )( )a wt wy wty wt = Σ Σ − Σ Σ ∆
, (10) 

and 

 [ ]1 ( )( ) ( )( )b w wty wt wy= Σ Σ − Σ Σ
∆

, (11) 

where 
 2 2( )( ) ( )w wt wt∆ = Σ Σ − Σ . (12) 

In these expressions, Σw, Σwt, Σwty, Σwt2 and Σwy are, respectively, summations from 1 to n of the weights; the 
product of the weights and the times; the product of the weights, times and observed differences; the product of the 
weights and times squared; and the product of the weights and the observed differences. 
 
Practical Considerations 
Since each yi is actually a difference between an as-found value and a prior as-left value, we could justifiably say 
that, for each (yi, ti) pair entered into the analysis, we could also enter an additional pair (yi, 0), where the value of yi 
would be an estimated quantity.  Of course, since the elapsed time is zero for these additional pairs, the best estimate 
is yi = 0 when  ti = 0.8 
 
There is a definite benefit to doing this.  To see this, imagine that we perform a regression analysis and estimate both 
a and b.  Because of the nature of the data we might have available, the estimate for a may turn out to be 
considerably larger than what we know to be reasonable.  That is, using the regression model y(t) = a + bt may yield 
unrealistic values for y(0). 
 
If the t = 0 estimated pairs are included, the intercept coefficient a is forced toward a more reasonable value, namely, 

7 This is not to be confused with “root sum square” uncertainty combination.  To try and keep the two separate, we 
will use the upper case RSS for residual sum of squares and the lower case rss for root sum square. 
8 It might be argued that two simultaneous measurements obtained at t = 0 with a given measurement process could 
yield different results due to measurement process error.  This would suggest that setting yi = 0 at t = 0 is not 
justified.  This concern is accommodated by taking into account the uncertainty due to measurement error.  In other 
words, we say that, at t = 0, we estimate the value of each yi to be zero with uncertainty ui. 

                                                           



zero.9  In addition, the variance in a and the covariance term become smaller in magnitude.  However, the variance 
in b becomes somewhat larger than what we would have if the estimated pairs were not included.   
 
Projecting y(t) 
Once we have obtained an estimate for the coefficient b, we can project values for y(t), starting from a specific 
initial value y0.  This value may be a measurement result, a sampled mean value or a Bayesian estimate of the 
parameter bias at t = 0.  The appropriate model is 

 0( )y t y bt= + , (13) 

Note, that, although the coefficient a is not included, as in Eq. (5), we still need to take into account the covariance 
between a and b, since the uncertainty in the regression fit should not ignore the relationship between the 
uncertainties in the t = 0 values and the slope of the regression curve. 
 
Letting uBOP  represent the uncertainty in y0, we can write 

 2 2 2 var( ) 2 cov( , )bias BOPu u t b t a b= + + , (14) 

The uncertainty uBOP may be estimated from a computed false accept risk, as will be done presently, or may be the 
result of a detailed uncertainty analysis [4-6].  If y0 is obtained by Bayesian analysis, uBOP becomes the standard 
deviation of the Bayesian estimate [7-14].   
 
It should be remarked at this point that Eq. (14) is employed in estimating the bias uncertainty in a particular 
projected parameter value, starting from a specific initial value and initial uncertainty.  This is not quite the same 
ubias that is computed with Eq.(6).  This uncertainty relates to computed values of y(t) within the context of the 
regression analysis. 
 
Estimating the Variances 
If a value for y(0) cannot be assumed, then we need to not only estimate the coefficient a, but also to compute its 
variance.  This variance is given by 

 

2
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 (15) 

where the variable u in each sum represents the uncertainty ui defined in the earlier definition of weighting factors, 
and where 

 2

2
RSSs
n

=
−

. (16) 

The variance in the coefficient b is written 
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and the covariance between a and b is 

9 This is actually a strength of the method, since it is expected that the average value for y(0) will be zero.  This does 
not mean, however, that the uncertainty in y(0) will necessarily be zero. 
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(18) 

Special Case:  Equal Process Uncertainties 

If u1 = u2 = … = un = u, then each wi = 1, and the above expressions reduce to 
2

2 2var( ) ( )ta s uΣ
= +

∆
, 

2 2var( ) ( )nb s u= +
∆

, 

and 
2 2cov( , ) ( )ta b s uΣ

= − +
∆

 

where 
2 2( ) ( )n t t∆ = Σ − Σ , 

and s2 is given in Eq. (16). 
 
Projecting Intervals 
Imagine that the parameter of interest is bounded by upper and lower tolerance limits -L1 and L2.  If we knew the 
initial value, then we might suppose at first sight, that the approach to take in estimating a calibration interval would 
be to enter the initial value in Eq. (13) and solve for the time T required for y to cross either -L1 or +L2.  If so, then, 
in cases where b is positive, we would have10 

2 0L yT
b
−

= , b > 0 

while, for cases where b is negative, we would write 

1 0L yT
b
+

= − , b < 0. 

This method, while conceptually palatable, is not recommended.  Instead, we use two alternative approaches.  In the 
first approach, the calibration interval is established as the time that corresponds to the point where the confidence 
that we are in-tolerance drops to some minimum acceptable level, given by 1 – α.  The variable α is usually 
something like 0.05, 0.01, etc.  In the second approach, the calibration interval is established as the time required for 
the uncertainty in the projected value of y to reach a maximum acceptable value. 
 
Reliability Target Method 
The probability or confidence that a parameter is in-tolerance is commonly referred to as measurement reliability.  
Accordingly, the approach for adjusting intervals to meet a given level of probability or confidence is labeled the 
reliability target method.  We will now examine this method as applied to several alternative tolerancing options.   
 
Two-Sided General Case:  Asymmetric Tolerances 
We consider a situation in which the upper and lower tolerance limits are not equal.  We also suppose that the 
desired confidence for y(t) being confined to values less than L2 is 1 - α and the desired confidence for y(t) being 
restricted to values greater than –L1 is 1 - β. 
 
We solve for T as the smallest of T1 and T2 using the expressions 

10 We assume that 1 0 2L y L− ≤ ≤ . 
                                                           



2 0 2 , 2var( ( ))L y bT t y Tα ν= + + , 
and 

1 0 1 , 1var( ( ))L y bT t y Tβ ν− = + − . 

In these expressions, ν represents the degrees of freedom of the variance estimates, and the variables tα,ν and tβ,ν are 
the t-statistics for confidence levels of 1 – α and 1 – β, respectively, with ν degrees of freedom.  The degrees of 
freedom ν will be discussed later. 
 
Solutions for T1 and T2 are obtained by iteration.  A good method to use is the Newton-Raphson method.  With this 
method, we first define a function F and its derivative F’.  For the T2 solution, these quantities are given by 

, 0 2biasF bt t u y Lα ν= + + − , 
and 

[ ], cov( , ) var( )
bias

t
F b a b t au

α ν′ = + + , 

where ubias is given as 
 2 22 cov( , ) var( )bias BOPu u t a b t b= + + . (19) 

We next estimate a starting value for t and solve for the value of t that makes the magnitude of the ratio F/F’ smaller 
than some desired level of precision ε.  The iteration algorithm is 
 

Set t = t0 
Compute F/F’ 
Do until Abs(F/F’) < ε 
 t = t - F/F’ 
 Compute F/F’ 
Loop 

 
Following completion of the loop, we set T2 = t.  The variable T1 is solved with the same algorithm, except that F 
and F’ are now given by 

, 0 1biasF bt t u y Lβ ν= − + + , 
and 

[ ], cov( , ) var( )
bias

t
F b a b t au

β ν′ = − + , 

where ubias is computed using Eq. (19). 
 
Two-Sided Symmetric Tolerances 
In this case, we have L1 = L2 = L, and, assuming equal upper and lower confidence levels, we have α1 = α2 = α / 2.  
As before, we solve for T as the smallest of T1 and T2.  These variables are again solved for iteratively using the 
algorithm described above. 
 
For the T2 solution, the functions F and F’ are given by 

/ 2, 0biasF bt t u y Lα ν= + + − , 
and 

[ ]/ 2, cov( , ) var( )
bias

t
F b a b t au

α ν′ = + + . 

For the T1 solution, we have 

/ 2, 0( ) biasF t bt t u y Lα ν= − + + , 
and 



[ ]/ 2, cov( , ) var( )
bias

t
F b a b t au

α ν′ = − + . 

For both solutions, the quantity ubias is again given by Eq. (19). 
 
Two interval analyses using the regressions results of Figure 1 are shown in Figures 2 and 3.  Figure 2 projects an 
interval for an initial value of 0.001 cm, while Figure 3 projects an interval for an initial value of 0.000 cm.  For the 
analyses shown, the zero initial value case yields the longer of the two intervals. 
 

 
Figure 2.  Interval Analysis – Known Uncertainty and Nonzero Initial Value.  The projected interval of 
approximately 20 weeks reflects an initial value of 0.001 cm, an initial uncertainty uBOP of 0.00275 cm, and 
corresponds to a confidence level of 85%.  The projected bias at the end of the interval is 0.000548 cm ±0.006327 cm.  
Note that the upper and lower control limits are asymmetric.  The analysis is based on the regression results shown in 
Figure 1.  The graphic is a screen shot of the SPC Interval Worksheet of SPCView [4]. 

 
As a side note; for this particular example, it would seem prudent to center spec the calibrated parameter at each 
calibration.  Other examples may yield different conclusions.  In some instances, the conclusion is counter-intuitive.  
For instance, we may have a parameter whose value exhibits a negative drift rate, leading us to suspect that adjusting 
the parameter value upward at calibration will yield an extended interval.  However, since the interval is keyed to a 
target confidence level, rather than an intercept time, this does not always happen.  In some cases, such 
compensating adjustments actually lower the in-tolerance probability. 
 
General Single-Sided Upper Limit Case 
For cases where the parameter of interest has only a single “not to exceed” tolerance limit L, we attempt to set a 
calibration interval that corresponds to a minimum acceptable confidence level 1 - α that the parameter’s value will 
be less than or equal to L.  The relevant expression is 

0 , var( ( ))L y bT t y Tα ν= + + , 

 
The solution for the interval T is arrived at by iteration using the algorithm given for the asymmetric two-sided case 
with 

, 0( ) biasF t bt t u y Lα ν= + + − , 
and 



[ ], cov( , ) var( )
bias

t
F b a b t au

α ν′ = + + , 

where ubias is again given by Eq. (19). 
 

 
Figure 3.  Interval Analysis – Known Initial Uncertainty and Zero Initial Value.  For the analysis shown, we can 
extend the interval of Figure 2 by about six weeks if we adjust the initial value to zero. 

 
General Single-Sided Lower Limit Case 
In this case, we attempt to determine a calibration interval that corresponds to a minimum acceptable confidence 
level 1 - α that the parameter’s deviation from y0 will be greater than or equal to L.  The relevant expression is 

0 , var( ( ))L y bT t y Tα ν= + − , 

The solution for the interval T employs the same algorithm as the single-sided upper case with 

/ 2, 0( ) biasF t bt t u y Lα ν= − + + , 
and 

[ ]/ 2, cov( , ) var( )
bias

t
F b a b t au

α ν′ = − + . 

 
Single-Sided Cases with Known Initial Value and Uncertainty 
In this case, we have 

2 2
0 , var( )BOPL y bT t u T bα ν±  = + ± +  , 

where the +(-) solution applies to cases with an upper (lower) tolerance limit.  The solution is 
2T c c d± ± ±= − + + , 

where 

,2 var( )
bc

t bα ν
± = ± , 

and 
2

0 ,

, var( )
BOPL y t u

d
t b

α ν

α ν
±

− ±
= ± . 



 
Uncertainty Target Method 
We return to the assertion that the uncertainty in a projected parameter value increases with time elapsed since 
measurement.  The approach for controlling this uncertainty to a maximum allowable value is labeled the 
uncertainty target method.   
 
With this method, the tolerance of the parameter of interest is not a factor.  Instead, we solve for the time T that it 
takes ubias to grow from an initial value uBOP to some maximum allowable target value u*.   

 
Figure 4.  Interval Analysis to Meet an Uncertainty Target – Known Uncertainty and Nonzero Initial Value.  
The example shown reflects an initial uncertainty uBOP of 0.00275 cm and a drift rate of –0.000023 cm/week.  The time 
required for the bias uncertainty to reach the maximum allowable value of 0.0035 cm is approximately 25 weeks.  The 
projected bias at the end of that interval is 0.000422 cm ±0.00687 cm.   

 
The relevant expression is 

2 2 2( *) var( ) 2 cov( , )BOPu u T b T a b= + + . 
Solving for the T gives 

2T c c d= − + − , 
where 

cov( , )
var( )

a bc b=  

and 
2 2( *)

var( )
BOPu ud b

−
= . 

 

Computing the Degrees of Freedom 
The degrees of freedom ν used to determine the appropriate t-statistics in this paper is obtained using the Welch-
Satterthwaite relation [6] 
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where k is the number of components of utotal.  If each uncertainty component has associated with it a sensitivity 
coefficient κi, then the Welch-Satterthwaite relation becomes 
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This relation will now be employed to compute the degrees of freedom for ubias. 
 
To obtain the degrees of freedom, we need to develop an expression for utotal that expresses the terms var(a), var(b) 
and cov(a,b) of Eq. (6) in a form that is conducive to using the Welch-Satterthwaite relation.  To do this, we write 
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and 
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where, from Eqs. (15), (17) and (18), we have 
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We now return Eq. (6) and write 
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where 
2 2 2 2 2( ) 2 0,1,2 ,i i i ih t t t i nα λ β= + + = ⋅⋅⋅ . 

Using this formalism, the degrees of freedom νbias is obtained from 
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Attributes Data Analysis 
In managing calibration and test equipment inventories, we rarely have the as-found and as-left variables data we 
have been working with to this point.  Instead, we are usually forced to work with as-found “in-tolerance” or “out-
of-tolerance” records.  Data of this sort are referred to as attributes data. 
 
Attributes data typically consist of a service date coupled with an as-found condition or “condition received.”  The 
condition received variable may take on several possible values including “in-tolerance” (success), “out-of-
tolerance” (failure), “damaged,” “inoperative,” etc.  Controlling uncertainty growth through the analysis of attributes 
data is covered in detail if References 1 and 2.  The following is intended to serve as a thumbnail view of the 
material in those documents. 
 
The Resubmission Time Series 
The successive dates between service actions on an item of equipment constitute an observed interval or 
resubmission time.  The resubmission time may be reset following each service or may be allowed to run until the 
occurrence of a recorded adjustment, corrective action or other “renewal.”  Depending on the method of analysis and 
assumptions about equipment renewal, a given condition received may be treated as a success or failure, may be 
ignored, or may be used to simply reset the clock with regard to resubmission time. 
 
From condition received data, a set of observed in-tolerance probabilities or percents in-tolerance is compiled that 
couples the observed probability with a corresponding resubmission time.  Such a compilation is called a time series.  
Since the condition received observations are often taken at the end of a scheduled calibration interval, the in-
tolerance probabilities are commonly referred to as “end-of-period percents in-tolerance,” “% EOP” or, simply, 
“EOP.”  A typical time series is shown in Table 1.  In Table 1, service actions are grouped by resubmission time and 
observed reliabilities are computed for each resubmission time grouping.11  In compiling such a time series, 
observed data may be portrayed for an individual item or for a homogeneous grouping of items. 
 

TABLE 1 
Example Out-of-Tolerance Time Series12 

 
 

Weeks Between 
Calibrations 

Number 
Calibrations 

Recorded 

Number In-
Tolerances 
Observed 

Observed 
Measurement 

Reliability 
t n(t) g(t) R(t) 

2-4 4 4 1.0000 
5-7 6 5 0.83333 

8-10 14 9 0.6429 
11-13 13 8 0.6154 
19-21 22 12 0.5455 
26-28 49 20 0.4082 
37-40 18 9 0.5000 
48-51 6 2 0.3333 

 
 

11 At present, research is planned to evaluate using ungrouped attributes data in analyzing uncertainty growth.  The 
results of this research will be reported in a future paper. 
12 Taken from Table C1 of Reference 2. 

                                                           



Measurement Reliability Modeling 
The transition of an equipment parameter from an in-tolerance state to an out-of-tolerance state is a random event.  
Accordingly, the process by which this transition occurs is called a stochastic process.  To analyze the observed 
time series, a mathematical model is assumed for the stochastic process.  The model is a mathematical function, 
characterized by coefficients.  The functional form is specified while the coefficients are estimated on the basis of 
the observed time series.  The problem of determining the probability law for the stochastic process thus becomes 
the problem of selecting the correct functional form for the time series and estimating its coefficients. 
 
Since an out-of-tolerance condition is analogous to a “measurement accuracy failure,” the in-tolerance probability is 
called the measurement reliability.  The mathematical model for the time series is called the reliability model. 
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Figure 5.   Hypothetical Observed Time Series.  The observed measurement 
reliabilities for the time series tabulated in Table 1. 

 
The method used to estimate the coefficients of a reliability model involves choosing a functional form which yields 
meaningful predictions of measurement reliability as a function of time.  By its nature, the function cannot precisely 
predict the times at which transitions to out-of-tolerance occur.  Instead, it predicts measurement reliability 
expectation values, given the times elapsed since calibration.  Thus the analysis attempts to determine a predictor 

ˆˆ( , ) ( )R t R tθ ε= + , where the random variable  satisfies E() = 0.  It can be shown that the method of maximum 
likelihood estimation provides consistent reliability model coefficient estimates for such predictors [15]. 
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Figure 6.   Out-of-Tolerance Stochastic Process Model.  The stochastic process underlying 
the time series is modeled by an exponential function of the form R(t) = R0e-λt. 

 



Whether the aim is to ensure measurement integrity for periodically calibrated equipment or to design equipment to 
tolerate extended periods between calibration, the uncertainty growth stochastic process is described in terms of 
mathematical models, characterized by two features:  (1) a functional form, and (2) a set of coefficients.  Figure 6 
models the time series of Table 1 with an exponential reliability model R(t) = R0e-λt characterized by the coefficients 
R0 = 1 and λ = 0.03.  Determination as to which mathematical form is appropriate for a given stochastic process and 
what values are to be assigned the coefficients is documented in the literature [1, 2]. 
 
Estimating Uncertainty Growth 
Our knowledge of the values of the measurable 
attributes of a calibrated item begins to fade from 
the time the item is calibrated.  This loss of 
knowledge of the values of attributes over time is 
called uncertainty growth.  For many attributes, 
there is a point where uncertainty growth reaches 
an unacceptable level, creating a need for 
recalibration.  Determining the time from the date 
of calibration required for an attribute's uncertainty 
to grow to an unacceptable level is the principal 
endeavor of calibration interval analysis. 
 
An unacceptable level of uncertainty corresponds 
to an unacceptable out-of-tolerance probability and 
a higher expected incidence of out-of-tolerance 
conditions.  For analysis purposes, an out-of-
tolerance condition is regarded as a kind of 
"failure," similar to a component or other 
functional failure.  However, unlike functional 
failures that are obvious to equipment users and 
operators, out-of-tolerance failures usually go undetected during use.  The detection of such failures occurs at 
calibration, provided of course that calibration uncertainties are sufficiently small. 
   

Time

Attribute Value

x1

x3

x2

x

f (x1)

f (x2)
f (x3)f (x)

X(t) = a + bt

 
Figure 8.  Measurement Uncertainty Growth.  Uncertainty 
growth over time for a typical measurement attribute.  The 
sequence shows statistical distributions at three different times.  
The uncertainty growth is reflected in the spreads in the curves.  
The out-of-tolerance probabilities at the times shown are 
represented by the shaded areas under the curves (the total area of 
each curve is equal to unity.).  As can be seen, the growth in 
uncertainty over time corresponds to a growth in out-of-tolerance 
probability over time. 
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Figure 9.  Measurement Reliability vs. Time.  The 
picture of uncertainty growth in Figure 8 shows that 
the in-tolerance probability, or measurement 
reliability, decreases with time since calibration.  
Plotting this quantity vs. time suggests that 
measurement reliability can be modeled by a time-
varying function.  Once this function is determined, 
the uncertainty in the bias of a parameter may be 
computed as a function of time. 

 
Several uncertainty growth mechanisms have been observed in practice.  The most versatile of these are described in 
References 1 and 2 and have been incorporated in commercially available software [5, 16, 17].  Five mechanisms 
are shown in Figure 6 that illustrate the differences in some of the applicable mechanisms.  From the figure, it is 
evident that reliability models are not always interchangeable. 
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Figure 7.  Measurement Uncertainty Growth Mechanisms.  
Several mathematical functions have been found applicable for 
modeling measurement uncertainty growth over time. 

 



 
Computing Bias Uncertainty 
As is shown in the previous section, the uncertainty in the bias of a parameter value at a given time elapsed since 
measurement can be linked to the in-tolerance probability at that time.  The relationship can be written 

2

1

( ) [( , ( )]
L

L

R t f x u t dx
−

= ∫ , 

where 

x = parameter bias or deviation from nominal 
or deviation from expected value 

u(t) = the standard uncertainty in x at time t 
f = the probability density function for x 

-L1 = the lower tolerance limit for x 
L2 = the upper tolerance limit for x 

 
Of course, in actual practice, we would need to employ a reliability model for R(t), for which we have a set of 
estimated coefficients.  Accordingly, we would have 
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1

ˆˆ( , ) [( , ( )]
L

L

R t f x u t dxθ
−

= ∫ . 

Once the reliability model is selected and modeled and a form can be decided on for f [x, u(t)], what remains is to 
invert the above expression to solve for u(t).  The approach will be illustrated for normally distributed parameter 
biases. 
 
Using the Normal Distribution 
Most uncertainty analysis methods and techniques are built on the assumption that the errors or biases, whose 
uncertainties we are attempting to estimate, are normally distributed [6, 18].  Given this assumption, the probability 
density function can be written 
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where it is assumed that the mean value for the error or parameter bias of interest is zero.  Defining the function 
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we have, after a little rearranging, 
2

2

1

/ ( )
/ 2

/ ( )

1 2

1ˆˆ( , )
2

1.( ) ( )

L u t
x

L u t

R t e dx

L L
u t u t

θ
π

−

−

=

   = Φ + Φ −      

∫
 

The uncertainty u(t) can be solved for numerically from this expression.  The Newton-Raphson method described 
earlier may be employed for this purpose.  In this case, we actually solve for a variable λ = u(t)-1.  For the present 
solution, we have 

[ ] [ ]1 2
ˆˆ1 ( , )F L L R tλ λ θ= Φ + Φ − − , 

and 
2 2

1 2( ) / 2 ( ) / 21 2

2 2
L LL LF e eλ λ

π π
− −′ = + . 

The algorithm is just 



 

Set λ = 1 / u0 
Compute F/F’ 
Do until Abs(F/F’) < ε 
 λ = λ - F/F’ 
 Compute F/F’ 
Loop 
Set u = 1 / λ 

 
Special Case:  L1 = L2 = L.  In the event that the upper and lower tolerances are equal, we have 

ˆˆ( , ) 2 1( )
LR t u tθ  = Φ −  

, 

and 

1

( )
ˆˆ1 ( , )

2

Lu t
R t θ−

=
 +Φ  
 

. 

The function Φ-1 is the inverse normal function found in statistics texts and popular spreadsheet programs.  For 
example, in Microsoft Excel, the function is called NORMSINV. 
 
Other Distributions 
While extremely useful for uncertainty analysis, the normal distribution is not applicable for certain sources of error 
nor is it usable in the absence of certain information.  These considerations are covered Reference 18. 
 

BOP Uncertainty 
If values of y(t) are computed from Eq. (5), then uBOP = var(a), where the variance is given in Eq. (15).  If, instead, 
y(t) is a projection from an initial value y0, as in Eq. (13), then uBOP is estimated as the initial uncertainty in y0.  
There are two basic method for obtaining such an estimate; parameter normalization and tolerance testing. 
 
Parameter Normalization – Variables Data 
If the result of a test or calibration is an assignment of an estimated value, either through a physical parameter 
adjustment or through the publication of a value or correction, then uBOP is essentially equal to the uncertainty of the 
test or calibration process.13  In some cases, it may be necessary to include an additional uncertainty associated with 
making a physical adjustment.  This is especially so in cases where physical adjustments may produce unknown 
spontaneous changes in parameter value [19]. 
 
For some parameters, it may also be advisable to include an uncertainty contribution due to errors induced by the 
delivery of a tested or calibrated device to the user.  This “shipping stress” uncertainty is relevant in cases where the 
process of shipping and handling involves stresses that differ appreciably from those encountered during use. 
 
Tolerance Testing – Attributes Data 
Certain tests or calibrations may consist only of a check to see whether the subject parameter can be said to be in-
tolerance.   Ordinarily, a parameter is said to be in-tolerance if the measurement result of testing or calibration is 
contained within the parameter’s tolerance limits.  If Bayesian methods are applied, the in- or out-of-tolerance 
decision can often be refined. 
 

13 Under certain conditions, it may be possible to apply Bayesian methods of analysis to the measurement result of a 
test or calibration [1, 7-10].  Such methods refine the estimated value and reduce its uncertainty.  Bayesian methods 
may also be employed in tolerance testing. 

                                                           



With tolerance testing, the uBOP term can be obtained from an estimate of the parameter’s BOP in-tolerance 
probability.  This probability is equal to the false accept risk associated with the test or calibration.  This risk, 
defined as the probability that an accepted parameter is out-of-tolerance, is a function of the uncertainty of the 
measurement process, the tolerance specifications of the subject parameter, and this parameter’s in-tolerance 
probability as received for testing or calibration [17, 20, 21]. 
 
If the false accept risk is represented by the variable pfa, then the BOP in-tolerance probability is given by14 

0 1 fap p= − . 

If the distribution of BOP parameter biases is known, the determination of uBOP immediately follows.  For example, 
if these biases are normally distributed, and the subject parameter’s spec is stated as symmetric two-sided limits ±L, 
then uBOP is given by 
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where Φ-1 is the inverse normal distribution function.   
 
Of course, other distributions are possible.  Reference 18 describes several distributions that are useful for 
computing bias uncertainty and discusses their applicability.  In this reference, the applicability (or lack thereof) of 
the uniform distribution is given special attention. 
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