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Abstract 
 

Most metrologists can easily calculate the variance in a multi-variate uncertainty 
analysis using the Law of Propagation of Uncertainties in their sleep.  However, 
the G.U.M. (Guide to the Expression of Uncertainty in Measurement)  alludes to 
the possibility that a measurement model might be sufficiently non-linear in the 
measurement parameters, that the usual method of calculation may not be 
adequate.  This paper investigates the difficulty and properties of such a non-
linear calculation by extending a measurement model out to three orders of a 
Taylor series expansion in two variables and compares the results with the 
G.U.M.'s mysterious suggestion of what the next most significant terms might 
look like.  We come to the conclusion that the paucity of additional treatment in 
the G.U.M. is a clear suggestion that a metrologist would probably not want to 
venture there if (s)he could possibly avoid it. 
 
The intended audience is practical metrologists who routinely perform 
uncertainty analyses.  Almost all uncertainty analyses are based upon linear 
approximations of the measurement model.  This paper investigates the extension 
of existing theory to a non-linear model and will help metrologists decide if such 
a model might be of benefit to their particular work.  

 
 
Any experienced metrologist is long familiar with the process for calculating uncertainties 
propagated through a mathematical model of an experiment.  The formula is known as the Law 
of Propagation of Uncertainty and is presented without derivation in countless books on 
uncertainty analysis and in the United States Guide to the Expression of Uncertainty in 
Measurement (G.U.M.) [1]. 
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Equation (10) in Chapter 5 of the G.U.M. states that when dealing with several independent 
random uncertainties, the combined standard uncertainty ( )zcσ  is the positive square root of the 
combined variance ( )zc

2σ  obtained from 
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where ( )ixσ  is a standard uncertainty and f() is the appropriate measurement model.  Later in 
Chapter 5 (5.2.2), the G.U.M. states that when dealing with dependent random uncertainties, the 
correlation term -- 
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needs to be added to the above equation where 
 

( )ji xx ,σ   is the estimated covariance of xi and xj. 
 
In a note, the G.U.M. states that the above formulae, based upon a first-order Taylor series 
approximation of z = f(x1, x2, ... , xn) expresses the law of propagation of uncertainty and that 
when the non-linearity of f() is significant, higher-order terms in the Taylor series expansion 
must be included in the calculation.  And in such a case, when the distribution of each xi is 
symmetric about its mean, the G.U.M. presents a mysterious formula for the most important 
terms of next highest order -- 
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which to an inquiring metrologist, who wonders when (s)he might have to do the hard work and 
carry out a non-linear analysis, begs to be investigated further to see what is involved. 
 
For two variables, x and y, and  N=2, the above expression can be expanded to  
 
[ 0.5 * fxx*fxx   +   fx*fxxx ] * (σx

2)2  +  
 
[ 0.5 * fxy*fxy   +   fx*fxyy ] * σx

2σy
2   + 

 
[ 0.5 * fxy*fxy   +   fy*fxxy ] * σx

2σy
2   + 

 
[ 0.5 * fyy*fyy   +   fy*fyyy ] * (σy

2)2  . 
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In this notation, partial derivatives are represented by an "f" with suffixes of the variables to 
which the function f is differentiated. fxx is the second partial derivative with respect to x. 
 
As developed below in this paper, the first term in each bracket is derived from a second-order 
Taylor expansion, and the second term in each bracket is from a third-order expansion. 
 
But the process is not as simple as just sharpening one's pencil and multiplying out a series of 
expansions.  In the process, we encountered three pitfalls: 
 

1. On beginning higher order analysis, one needs to re-investigate all one's usual 
assumptions regarding distributions and statistical formulae for their validity in non-
linear work. 

2. The G.U.M.'s mysterious formula only applies to Normal distributions, which might have 
been assumed, but was not explicitly stated.  The G.U.M. simply says the formula applies 
to independent and symmetric error distributions. 

3. After beginning the investigation, we came to the awareness that any analysis involving 
higher order terms, is most probably, going to require attention paid to correlated (non-
independent) errors.  This is true from the practical side in which a real calibration 
problem will probably have some type of correlated errors.  And it is also true from a 
mathematical perspective in that the mathematical form of a correlation can produce 
higher order cross-product expectation values which do not reduce to zero even if the 
errors are not correlated. 

 
In addressing Pitfall #1, it is important to go back to the definition of a variance and work 
through the derivation of the Law of the Propagation of Uncertainties because there are a number 
of subtleties involved. "The Law", is almost intuitively acceptable to most people.  And it is 
statistically valid for a first-order Taylor series.  In that case, it follows immediately from the 
statistical identity that the variance of a sum of independent random variables is equal to the sum 
of the variances of those random variables: 
 

)var(...)var()var()...var( 2121 nn xxxxxx +++=+++  
 
If the random variables are not independent, then the addition of the covariance terms is needed.  
One can easily see, that a first-order Taylor approximation of errors is simply a sum of random 
errors, each scaled by its partial derivative, and this fits the statistical identity above. 
 
However, when a higher order Taylor series is used, you no longer have a simple linear sum of 
random variables.  You have a sum of mixed powers of random variables and to calculate a 
variance, we need to return to the rigorous definition of a variance of a random variable, z,  
which is the second moment minus the first moment squared -- 
 

[ ] [ ]222 zEzEz −=σ . 
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In a higher order expansion of z, the expectation value of z is not zero even if the component 
errors are symmetric about their origins. 
 
To illustrate this, we begin with a general Taylor series expansion where  
 

z = f(x1, x2, ... , xn) 
 
To calculate the error, Δz, the zeroth order term is subtracted from the function so that it appears 
on the left side of the equation and the rest of the expansion appears on the right. 
 
Δz =  
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where Rn is the usual remainder term.  For a second-order Taylor expansion in two variables, the 
error looks like -- 
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and even if the x and the y variables are normally distributed,  the expectation value of Δz is not 
equal to zero because of the squared terms in the x and the y errors. 
 
The results for a second order expansion in two variables are shown below, to illustrate the 
process and the symbolic notation.  The results for a third order expansion in two variables are 
shown in Appendix A. 
 
For symmetric distributions many of the expectation values calculated will be zero.  For the sake 
of generality, the calculation will assume that the variables are correlated and all terms are 
retained, even if their expectation values will later be set to zero, but non-zero expectation values 
(for symmetric distributions) will be shown in boldface type.  Of special interest are expectation 
values containing cross-products.  They are interesting with regard to Pitfall #3 because not all of 
them are zero, even though the variables are not correlated.  These expectation values are shown 
indented and in italics.   
 
It is a unique property of statistics that even though we do not know the probability density 
function of joint random variables, we can still represent various formulae and functions with the 
expectation values of the sums of powers of the variables. 
 
For a second order Taylor expansion of the function z = f(x, y), the error in z, Δz, is equal to the 
sum of the Error terms shown in Table 1, below.  The results of the further stages of the variance 
calculation are shown in the tables following. 
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Table 1 -- Error terms of Taylor expansion (to 2nd order) 
 

  Coef Error   Coef E[Error] 
1st Order    
 1 ∆X * fx  1 E[X] * fx 
 1 ∆Y * fy  1 E[Y] * fy 
2nd Order      
 0.5 ∆X2 * fxx  0.5 E[X2] * fxx 
 1.0 ∆X * ∆Y * fxy  1.0    E[XY] * fxy 
 0.5 ∆Y2 * fyy  0.5 E[Y2] * fyy 
 
 
The next table, Table 2, shows squared error terms from a 2nd order Taylor expansion. 
 

Table 2 -- Error2 terms from Table 1 
 

 Coef Error2  Coef E[Error2] 
Terms from 1st order expansion    
 1 ∆X2 * fx2  1 E[X2] * fx2 
 2 ∆X * ∆Y * fx * fy  2    E[XY] * fx * fy 
 1 ∆Y2 * fy2  1 E[Y2] * fy2 
Terms from 2nd order expansion      
 1 ∆X3 * fx * fxx  1 E[X3] * fx * fxx 
 2 ∆X2 * ∆Y * fx * fxy  2    E[X2Y] * fx * fxy 
 1 ∆X * ∆Y2 * fx * fyy  1    E[XY2] * fx * fyy 
 1 ∆X2 * ∆Y * fxx * fy  1    E[X2Y] * fxx * fy 
 2 ∆X * ∆Y2 * fxy * fy  2    E[XY2] * fxy * fy 
 1 ∆Y3 * fy * fyy  1 E[Y3] * fy * fyy 
 0.25 ∆X4 * fxx2  0.25 E[X4] * fxx2 
 1 ∆X3 * ∆Y * fxx * fxy  1    E[X3Y] * fxx * fxy 
 0.5 ∆X2 * ∆Y2 * fxx * fyy  0.5    E[X2Y2] * fxx * fyy 
 1 ∆X2 * ∆Y2 * fxy2  1    E[X2Y2] * fxy2 
 1 ∆X * ∆Y3 * fxy * fyy  1    E[XY3] * fxy * fyy 
 0.25 ∆Y4 * fyy2  0.25 E[Y4] * fyy2 
 
And finally terms of the variance are shown in Table 3 before expectation values are calculated.  
It uses the expectation values from Table 1 and Table 2.   
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Table 3 -- Variance terms summed from the formula E[Error2] - E[Error]2 

 
Coef E[Error2]  Coef E[Error]2 
Terms from 1st order expansion    

1 E[X2] * fx2  -1 E[X]2 * fx2 
2    E[XY] * fx * fy  -2 E[X] * E[Y] * fx * fy 
1 E[Y2] * fy2  -1 E[Y]2 * fy2 

Terms from 2nd order expansion      
1 E[X3] * fx * fxx  -1 E[X2] * E[X] * fx * fxx 
2    E[X2Y] * fx * fxy  2    E[XY] * E[X] * fx * fxy 
1    E[XY2] * fx * fyy  -1 E[X] * E[Y2] * fx * fyy 
1    E[X2Y] * fxx * fy  -1 E[X2] * E[Y] * fxx * fy 
2    E[XY2] * fxy * fy  -2    E[XY] * E[Y] * fxy * fy 
1 E[Y3] * fy * fyy  -1 E[Y2] * E[Y] * fy * fyy 

0.25 E[X4] * fxx2  -0.25 E[X2]2 * fxx2 
1    E[X3Y] * fxx * fxy  -1    E[X2] * E[XY] * fxx * fxy 

0.5    E[X2Y2] * fxx * fyy  -0.5 E[X2] * E[Y2] * fxx * fyy 
1    E[X2Y2] * fxy2  -1    E[XY]2 * fxy2 
1    E[XY3] * fxy * fyy  -1    E[XY] * E[Y2] * fxy * fyy 

0.25 E[Y4] * fyy2  -0.25 E[Y2]2 * fyy2 
 
One thing the G.U.M. doesn't say is that when determining which of the next higher order terms 
are relevant, they are assuming Normal distributions.  The G.U.M only says it assumes 
independent and symmetric distributions, but in order to get the same terms as shown in the 
G.U.M., the distributions must also be Normal and the following relations apply. 
 
E[X2] = σx

2 
E[Y2] = σy

2 
E[XY] = ρσxσy 
E[X4] = 3σx

4 
E[Y4] = 3σy

4 
E[X2Y] = 0   and   E[XY2] = 0 
E[X3] = 0   and   E[Y3] = 0 
E[X2Y2] = (1+2ρ2) σx

2σy
2 Note: this is the illustration of Pitfall #3.  If correlation terms are 

dropped too soon, before the expectation values are calculated, this term disappears.  
However, from this equivalent formula, it is seen that part of the term remains even 
when ρ = 0. 

E[X3Y] = 3ρσx
3σy

 

E[XY3] = 3ρσxσy
3 
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The final terms of the variance for the special case of symmetric independent errors are shown in 
Table 4.  With simple re-arrangement and combination, it is easily seen that the terms from the 
2nd order expansion can be converted into the first terms in the G.U.M.'s mysterious formula. 
 
 

Table 4 -- Variance terms for independent Normal errors 
 

Terms from 1st order expansion 
 1.00 E[X2]  * fx2 = fx * fx * σx

2  
 1.00 E[Y2]  * fy2 = fy * fy * σy

2   
Terms from 2nd order expansion  
 0.25 E[X4]  * fxx2 = 0.25 * 3 * fxx * fxx * σx

4  
 -0.25 E[X2]2 * fxx2 = -0.25 * fxx * fxx * σx

4  
 1.00 E[X2]  * E[Y2]  * fxy2 = 2 * (0.5 * fxy * fxy *σx

2σy
2 

 0.25 E[Y4]  * fyy2 = 0.25 * 3 * fyy * fyy * σy
4  

 -0.25 E[Y2]2 * fyy2 = -0.25 * fyy * fyy * σy
4  

 
 
A review of Appendix A and all the terms generated up to a third order expansion leads one to 
quickly appreciate the work involved -- especially if many of the terms do not go to zero. Table 
5, below, lists the number of terms proceeding from each order of expansion for two variables, 
including a 4th order expansion whose results are not shown.  To the extent investigated by this 
paper, of four orders (fourth order not shown) of expansion in two variables, the terms stemming 
from one order of expansion did not mix with terms stemming from a different order.  The 
number of terms proliferate as a power as you allow the expansions to include three and more 
variables. 
 

Table 5 -- Terms generated from each order of expansion 
 

 
Initial terms in 

expansion 
Final terms in 

variance 
1st order expansion 2 3 
2nd order expansion 5 15 
3rd order expansion 9 45 
4th order expansion (not shown) 14 105 
 
 

Example 
 
An example should serve to illustrate the practical side of such a calculation.  Suppose that we 
seek the volume V of a right cylinder by measuring its length L (x) and diameter D (y). Imagine 
that these measurements are made by the same person (operator) using the same device, e.g., a 
micrometer, which will illustrate the realistic occasion of dealing with non-independent 
parameters.  The “system equation” is  
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Assume that the error in the length measurement is normally distributed and is equal to σL and 
the error in the diameter measurement is also normally distributed and equal to σD.  Allowing for 
correlation and symmetric error distribution functions, the variance of the volume can be 
calculated using the boldface terms for the variance from Table 3. 
 
σV

2 =  σx
2 * fx2 + 2 * ρσxσy * fx * fy 

 + σy
2 * fy2 + 0.25 * 3 * σx

4 * fxx2 
  - 0.25 * σx

4 * fxx2 +3 * ρσx
3σy * fxx * fxy 

 - σx
2ρσxσy * fxx * fxy  + 0.5 * (1 + ρ2) σx

2σy
2 * fxx * fyy 

 - 0.5 * σx
2σy

2 * fxx * fyy + (1+2ρ2) σx
2σy

2 * fxy2 
 - ρ2σx

2σy
2 * fxy2 + 3 * ρσxσy

3 * fxy * fyy 
 - ρσxσyσy

2 * fxy * fyy + 0.25 * 3 * σy
4 * fyy2 

 - 0.25 * σy
4 * fyy2 

 
where ρ is the correlation coefficient between the errors in L and D.  Since the measurements of 
L and D were made by the same person using the same micrometer, this coefficient is not zero, 
that is to say that there are micrometer bias and operator bias correlations between the 
measurements of L and D.  The expression for the correlation coefficient is  
 

jDiL

n

i

n

j
jiDL

DL
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1 σσρ
σσ
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=  

 
where ρL,D,i,j is the correlation between the ith error component of L and the jth error component 
of D.  Let σL,b and σL,op represent the uncertainty due to micrometer bias and operator bias in the 
length measurement and let σD,b and σD,op represent the uncertainty due to micrometer bias and 
operator bias in the diameter measurement.  Then 
 
ρ = 1/σLσD  ( ρL,D,b,b σL,bσD,b + ρL,D,op,op σL,opσD,op ) 
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Imagine that micrometer bias and operator bias are the only measurement errors present. 
(Ordinarily, uncertainties due to random error, micrometer resolution and environment would be 
included in σL and σD.  The analysis presented here is for purposes of illustration only.) 
 

σL,b  = 0.0045 cm 
σL,op  = 0.0030 cm 
σD,b  = 0.0045 cm 
σD,op  = 0.0030 cm 
 

0054.02
,

2
, =+= opLbLL σσσ  cm 

0054.02
,

2
, =+= opDbDD σσσ  cm 

 
Suppose that the only error sources in these measurements are those due to operator bias and 
device parameter bias.  We can estimate the correlation coefficients between x and y to be
 ρL,D,b,b = 1.0 
 ρL,D,op,op = 0.5 
 
ρ = [(1.0)(0.0045)(0.0045) + (0.5)(0.0030)(0.0030)] / [(0.0054)(0.0054)] = 0.849 
 
Consider a 1 cc cylinder with L= 0.65 cm and D= 1.4 cm.  We can then substitute for the σ's, ρ 
and partial derivatives in the above equation and obtain -- 
 
σV

2 = (0.0054)2 * (π(D/2)2)2 + 2(0.849)(0.0054)(0.0054)π(D/2)2πL(D/2) 
 + (0.0054)2 * (πL(D/2))2 + 0 
 + 0 + 0 
 + 0 + 0 
 + 0 + (1+2(0.849)2) (0.0054)2(0.0054)2 * (π(D/2))2 
 - (0.849)2(0.0054)2(0.0054)2 * (π(D/2))2 
  + 3(0.849)(0.0054)(0.0054)3 * π(D/2) * π(L/2) 
 -(0.849)(0.0054)(0.0054)(0.0054)2 * π(D/2) * π(L/2) 
   + 0.25 * 3(0.0054)4 * (π(L/2))2 
 - (0.25)(0.0054)4 * (π(L/2))2 
 
With a final substitution for L and D, the result is σV

2 = 0.00024 cm2  and σV = 0.015 cm. 
 
If the correlation coefficient is not taken into account σV = 0.011 cm.  This calculation was 
carried out with a 2nd order Taylor series.  If a 3rd order Taylor series was used (using the terms 
from Appendix A) the result is not significantly different, since the extra odd terms tend to zero. 
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Conclusion 
 
The primary purpose of this paper has been to address the questions raised by the complex 
formula in the G.U.M. on the propagation of uncertainties in a non-linear uncertainty analysis.  
The authors have done the hard and intimidating work of expanding the mathematics and 
analyzing the resultant terms for their significance.  That level of work shows the tremendous 
number of questions that would have to be analyzed  and answered in terms of correlations, 
cross-correlations and symmetry of probability density functions.  The work presented should 
deter the metrologist from trying to carry out a higher order Taylor analysis unless it is 
absolutely necessary.  Even in this simple examination of two variables carried out to three 
orders of expansion, it was necessary to write a symbolic manipulator to carry out the expansions 
and accumulate the terms for this analysis.  Such programs can be purchased, but the difficulty 
would still lie in evaluating each of the potentially hundreds of terms, unless the errors are 
independent and symmetric, and even then, the numbers of terms can be intimidating. 
 
In carrying out the analysis, some "not so apparent" properties of a variance (a pitfall) have come 
forth which have produced the opportunity to address them by returning to the full definition of 
the variance, completing the calculation using higher order terms, and thereby increasing our 
understanding of it.  A similar pitfall was discovered and addressed by elimination of correlation 
terms prematurely in the analysis.  There are many cases in statistics where the full formula is 
not used because of simplifying assumptions, and this can lead to distorted results in the 
mathematics. 
 
It appears that the message of the G.U.M., in presenting an intimidating formula for higher order 
analysis is, "Are you sure you want to go there?" 
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Appendix A -- Variance calculated for a measurement error model in two parameters carried out 
to a third order Taylor expansion. 
 
If a given parameter, z, is calculated as a function several variables 
 

z = f(x1, x2, ... , xN) 
 

an estimate of uncertainty in z can be obtained by expanding the function in a Taylor series of 
different orders, depending upon the judgment of the experimentalist, and a variance can be 
calculated, as discussed in the paper, from --  
 

[ ] [ ]222 ZEZEZ −=σ  
 
For a third order Taylor expansion of the function z = f(x, y), the error in z, Δz, is equal to the 
sum of the Error terms shown in Table A-1, below.  The results of the further stages of the 
variance calculation are shown in the tables following.  For symmetric distributions many of the 
expectation values calculated will be zero.  For the sake of generality, the calculation will 
assume that the variables are correlated and all terms are retained, even if their expectation 
values will later be set to zero but non-zero expectation values (for symmetric distributions) will 
be shown in boldface type.  Of special interest, as explained in the text, are expectation values 
containing cross-products.  These expectation values are shown indented and in italics.   
 
 

Table A-1 -- Error terms of Taylor expansion (to 3rd order) 
 

  Coef Error   Coef E[Error] 
1st Order    
 1 ∆X * fx  1 E[X] * fx 
 1 ∆Y * fy  1 E[Y] * fy 
2nd Order      
 0.5 ∆X2 * fxx  0.5 E[X2] * fxx 
 1.0 ∆X * ∆Y * fxy  1.0    E[XY] * fxy 
 0.5 ∆Y2 * fyy  0.5 E[Y2] * fyy 
3rd Order      
 0.1667 ∆X3 * fxxx  0.1667 E[X3] * fxxx 
 0.5 ∆X2 * ∆Y * fxxy  0.5    E[X2Y] * fxxy 
 0.5 ∆X * ∆Y2 * fxyy  0.5    E[XY2] * fxyy 
 0.1667 ∆Y3 * fyyy  0.1667 E[Y3] * fyyy 
 
 
The next table, Table A-2, shows squared error terms from the Taylor expansion. 
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Table A-2 -- Error2 terms from Table A-1 

 
 Coef Error2  Coef E[Error2] 
Terms from 1st order expansion    
 1 ∆X2 * fx2  1 E[X2] * fx2 
 2 ∆X * ∆Y * fx * fy  2    E[XY] * fx * fy 
 1 ∆Y2 * fy2  1 E[Y2] * fy2 
Terms from 2nd order expansion      
 1 ∆X3 * fx * fxx  1 E[X3] * fx * fxx 
 2 ∆X2 * ∆Y * fx * fxy  2    E[X2Y] * fx * fxy 
 1 ∆X * ∆Y2 * fx * fyy  1    E[XY2] * fx * fyy 
 1 ∆X2 * ∆Y * fxx * fy  1    E[X2Y] * fxx * fy 
 2 ∆X * ∆Y2 * fxy * fy  2    E[XY2] * fxy * fy 
 1 ∆Y3 * fy * fyy  1 E[Y3] * fy * fyy 
 0.25 ∆X4 * fxx2  0.25 E[X4] * fxx2 
 1 ∆X3 * ∆Y * fxx * fxy  1    E[X3Y] * fxx * fxy 
 0.5 ∆X2 * ∆Y2 * fxx * fyy  0.5    E[X2Y2] * fxx * fyy 
 1 ∆X2 * ∆Y2 * fxy2  1    E[X2Y2] * fxy2 
 1 ∆X * ∆Y3 * fxy * fyy  1    E[XY3] * fxy * fyy 
 0.25 ∆Y4 * fyy2  0.25 E[Y4] * fyy2 
Terms from 3rd order expansion      
 0.3334 ∆X4 * fx * fxxx  0.3334 E[X4] * fx * fxxx 
 1 ∆X3 * ∆Y * fx * fxxy  1    E[X3Y] * fx * fxxy 
 1 ∆X2 * ∆Y2 * fx * fxyy  1    E[X2Y2] * fx * fxyy 
 0.3334 ∆X * ∆Y3 * fx * fyyy  0.3334    E[XY3] * fx * fyyy 
 0.3334 ∆X3 * ∆Y * fxxx * fy  0.3334    E[X3Y] * fxxx * fy 
 1 ∆X2 * ∆Y2 * fxxy * fy  1    E[X2Y2] * fxxy * fy 
 1 ∆X * ∆Y3 * fxyy * fy  1    E[XY3] * fxyy * fy 
 0.3334 ∆Y4 * fy * fyyy  0.3334 E[Y4] * fy * fyyy 
 0.1667 ∆X5 * fxx * fxxx  0.1667 E[X5] * fxx * fxxx 
 0.5 ∆X4 * ∆Y * fxx * fxxy  0.5    E[X4Y] * fxx * fxxy 
 0.5 ∆X3 * ∆Y2 * fxx * fxyy  0.5    E[X3Y2] * fxx * fxyy 
 0.1667 ∆X2 * ∆Y3 * fxx * fyyy  0.1667    E[X2Y3] * fxx * fyyy 
 0.3334 ∆X4 * ∆Y * fxxx * fxy  0.3334    E[X4Y] * fxxx * fxy 
 1 ∆X3 * ∆Y2 * fxxy * fxy  1    E[X3Y2] * fxxy * fxy 
 1 ∆X2 * ∆Y3 * fxy * fxyy  1    E[X2Y3] * fxy * fxyy 
 0.3334 ∆X * ∆Y4 * fxy * fyyy  0.3334    E[XY4] * fxy * fyyy 
 0.1667 ∆X3 * ∆Y2 * fxxx * fyy  0.1667    E[X3Y2] * fxxx * fyy 
 0.5 ∆X2 * ∆Y3 * fxxy * fyy  0.5    E[X2Y3] * fxxy * fyy 
 0.5 ∆X * ∆Y4 * fxyy * fyy  0.5    E[XY4] * fxyy * fyy 
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Table A-2 (cont.) -- Error2 terms from Table A-1 

 
 Coef Error2  Coef E[Error2] 
 0.1667 ∆Y5 * fyy * fyyy  0.1667 E[Y5] * fyy * fyyy 
 0.0278 ∆X6 * fxxx2  0.0278 E[X6] * fxxx2 
 0.1667 ∆X5 * ∆Y * fxxx * fxxy  0.1667    E[X5Y] * fxxx * fxxy 
 0.1667 ∆X4 * ∆Y2 * fxxx * fxyy  0.1667    E[X4Y2] * fxxx * fxyy 
 0.0556 ∆X3 * ∆Y3 * fxxx * fyyy  0.0556    E[X3Y3] * fxxx * fyyy 
 0.25 ∆X4 * ∆Y2 * fxxy2  0.25    E[X4Y2] * fxxy2 
 0.5 ∆X3 * ∆Y3 * fxxy * fxyy  0.5    E[X3Y3] * fxxy * fxyy 
 0.1667 ∆X2 * ∆Y4 * fxxy * fyyy  0.1667    E[X2Y4] * fxxy * fyyy 
 0.25 ∆X2 * ∆Y4 * fxyy2  0.25    E[X2Y4] * fxyy2 
 0.1667 ∆X * ∆Y5 * fxyy * fyyy  0.1667    E[XY5] * fxyy * fyyy 
 0.0278 ∆Y6 * fyyy2  0.0278 E[Y6] * fyyy2 
 
And finally, terms of the variance are shown in Table A-3 before expectation values are 
calculated.  It uses the expectation values from Table A-1 and Table A-2. 
 
 

Table A-3 -- Variance terms summed from the formula E[Error2] - E[Error]2 
 

Coef E[Error2]  Coef E[Error]2 
Terms from 1st order expansion    

1 E[X2] * fx2  -1 E[X]2 * fx2 
2    E[XY] * fx * fy  -2 E[X] * E[Y] * fx * fy 
1 E[Y2] * fy2  -1 E[Y]2 * fy2 

Terms from 2nd order expansion      
1 E[X3] * fx * fxx  -1 E[X2] * E[X] * fx * fxx 
2    E[X2Y] * fx * fxy  2    E[XY] * E[X] * fx * fxy 
1    E[XY2] * fx * fyy  -1 E[X] * E[Y2] * fx * fyy 
1    E[X2Y] * fxx * fy  -1 E[X2] * E[Y] * fxx * fy 
2    E[XY2] * fxy * fy  -2    E[XY] * E[Y] * fxy * fy 
1 E[Y3] * fy * fyy  -1 E[Y2] * E[Y] * fy * fyy 

0.25 E[X4] * fxx2  -0.25 E[X2]2 * fxx2 
1    E[X3Y] * fxx * fxy  -1    E[X2] * E[XY] * fxx * fxy 

0.5    E[X2Y2] * fxx * fyy  -0.5 E[X2] * E[Y2] * fxx * fyy 
1    E[X2Y2] * fxy2  -1    E[XY]2 * fxy2 
1    E[XY3] * fxy * fyy  -1    E[XY] * E[Y2] * fxy * fyy 

0.25 E[Y4] * fyy2  -0.25 E[Y2]2 * fyy2 
Terms from 3rd order expansion      
0.3334 E[X4] * fx * fxxx  -0.3334 E[X3] * E[X] * fx * fxxx 

1    E[X3Y] * fx * fxxy  -1    E[X2Y] * E[X] * fx * fxxy 
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Table A-3  (cont.) -- Variance terms summed from the formula E[Error2] - E[Error]2 

 
Coef E[Error2]  Coef E[Error]2 

1    E[X2Y2] * fx * fxyy  -1    E[XY2] * E[X] * fx * fxyy 
0.3334    E[XY3] * fx * fyyy  -0.3334 E[X] * E[Y3] * fx * fyyy 
0.3334    E[X3Y] * fxxx * fy  -0.3334 E[X3] * E[Y] * fxxx * fy 

1    E[X2Y2] * fxxy * fy  -1    E[X2Y] * E[Y] * fxxy * fy 
1    E[XY3] * fxyy * fy  -1    E[XY2] * E[Y] * fxyy * fy 

0.3334 E[Y4] * fy * fyyy  -0.3334 E[Y3] * E[Y] * fy * fyyy 
0.1667 E[X5] * fxx * fxxx  -0.1667 E[X2] * E[X3] * fxx * fxxx 

0.5    E[X4Y] * fxx * fxxy  -0.5    E[X2Y] * E[X2] * fxx * fxxy 
0.5    E[X3Y2] * fxx * fxyy  -0.5    E[X2] * E[XY2] * fxx * fxyy 

0.1667    E[X2Y3] * fxx * fyyy  -0.1667 E[X2] * E[Y3] * fxx * fyyy 
0.3334    E[X4Y] * fxxx * fxy  -0.3334    E[X3] * E[XY] * fxxx * fxy 

1    E[X3Y2] * fxxy * fxy  -1    E[X2Y] * E[XY] * fxxy * fxy 
1    E[X2Y3] * fxy * fxyy  -1    E[XY2] * E[XY] * fxy * fxyy 

0.3334    E[XY4] * fxy * fyyy  -0.3334    E[XY] * E[Y3] * fxy * fyyy 
0.1667    E[X3Y2] * fxxx * fyy  -0.1667 E[X3] * E[Y2] * fxxx * fyy 

0.5    E[X2Y3] * fxxy * fyy  -0.5    E[X2Y] * E[Y2] * fxxy * fyy 
0.5    E[XY4] * fxyy * fyy  -0.5    E[XY2] * E[Y2] * fxyy * fyy 

0.1667 E[Y5] * fyy * fyyy  -0.1667 E[Y2] * E[Y3] * fyy * fyyy 
0.0278 E[X6] * fxxx2  -0.0278 E[X3]2 * fxxx2 
0.1667    E[X5Y] * fxxx * fxxy  -0.1667    E[X2Y] * E[X3] * fxxx * fxxy 
0.1667    E[X4Y2] * fxxx * fxyy  -0.1667    E[X3] * E[XY2] * fxxx * fxyy 
0.0556    E[X3Y3] * fxxx * fyyy  -0.0556 E[X3] * E[Y3] * fxxx * fyyy 
0.25    E[X4Y2] * fxxy2  -0.25    E[X2Y]2 * fxxy2 
0.5    E[X3Y3] * fxxy * fxyy  -0.5    E[X2Y] * E[XY2] * fxxy * fxyy 

0.1667    E[X2Y4] * fxxy * fyyy  -0.1667    E[X2Y] * E[Y3] * fxxy * fyyy 
0.25    E[X2Y4] * fxyy2  -0.25    E[XY2]2 * fxyy2 

0.1667    E[XY5] * fxyy * fyyy  -0.1667    E[XY2] * E[Y3] * fxyy * fyyy 
0.0278 E[Y6] * fyyy2  -0.0278 E[Y3]2 * fyyy2 

 
When expectation values are calculated and parameters for independent Normal errors, as 
discussed in the text are substituted into the terms of Table A-3, the final terms of the variance 
are shown in Table A-4, and with a little re-arrangement, can be shown to match the terms "of 
next higher significance" in the G.U.M..  From the 3rd order expansion, there are an additional 
six terms, but they are raised to the sixth power and presumably are too small to be considered as 
significant. 
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Table A-4 -- Variance terms for independent Normal errors 
 

Terms from 1st order expansion 
 1.00 E[X2]  * fx2 = fx * fx * σx

2  
 1.00 E[Y2]  * fy2 = fy * fy * σy

2   
Terms from 2nd order expansion  
 0.25 E[X4]  * fxx2 = 0.25 * 3 * fxx * fxx * σx

4  
 -0.25 E[X2]2 * fxx2 = -0.25 * fxx * fxx * σx

4  
 1.00 E[X2]  * E[Y2]  * fxy2 = 2 * (0.5 * fxy * fxy *σx

2σy
2 

 0.25 E[Y4]  * fyy2 = 0.25 * 3 * fyy * fyy * σy
4  

 -0.25 E[Y2]2 * fyy2 = -0.25 * fyy * fyy * σy
4  

Terms from 3rd order expansion  
 0.3334 E[X4] * fx * fxxx = 0.333 * fx * fxxx * 3σx

4  
 1 E[X2Y2] * fx * fxyy = fx * fxyy * σx

2σy
2 

 1 E[X2Y2] * fxxy * fy = fy * fxxy *σx
2σy

2 
 0.3334 E[Y4] * fy * fyyy = 0.333 * fy * fyyy * 3σy

4  
 0.0278 E[X6] * fxxx2 Higher terms -- not significant 
 0.1667 E[X4Y2] * fxxx * fxyy Higher terms -- not significant 
 0.25 E[X4Y2] * fxxy2 Higher terms -- not significant 
 0.1667 E[X2Y4] * fxxy * fyyy Higher terms -- not significant 
 0.25 E[X2Y4] * fxyy2 Higher terms -- not significant 
 0.0278 E[Y6] * fyyy2 Higher terms -- not significant 
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