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Background 
The degrees of freedom associated with an uncertainty estimate quantifies the amount of information that went 
into the estimate.  As this amount of information grows, the degrees of freedom becomes larger.  Conversely, if 
our information is meager or unclear, the degrees of freedom shrinks.  Another way of saying this is that, if the 
uncertainty or variance in an uncertainty estimate is large, the degrees of freedom is small.  An approximate 
expression of this relationship, as applied to computing the degrees of freedom for a Type B estimate, is 
provided in Eq. G.3 of the GUM [1] 
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This is an intuitively appealing result in that the degrees of freedom is inversely proportional to the square of the 
uncertainty in the uncertainty estimate.  Hence, a large variance in the uncertainty estimate yields a small degrees 
of freedom. 
 
While the relation is appealing, the GUM offers no advice on how to compute σ[u(x)].  Fortunately, a method 
was developed since the publication of the GUM, that was reported at the 2000 MSC [2], and has proved useful 
in practice.  This method will be referred to herein as the Castrup method. 
 
Recent Findings 
An investigation of has been undertaken [3] in which sets of normal deviates are generated with known standard 
deviations for a variety of sample sizes.  Following this, standard deviations for each set are calculated using 
both Type A and Type B procedures.   
 
The Type A estimate is, of course, 
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while the Type B estimate is given by 
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In this expression, the variable L is an arbitrary limit used to bound values of x around the mean value and p is 
the observed fraction of values found within ± L of the mean.  For example, if ux is the uncertainty in the bias of 
a toleranced parameter, ± L would most likely be the tolerance limits for a parameter�s deviation from nominal 
and p would be the observed fraction in-tolerance.  In discussing Type B uncertainty estimates, the limits ±L are 
referred to as containment limits and p is called the containment probability. 
 
Preliminary Results 
The results to date show that, for most of the simulated trials, as the sample size n grows to 50 or more, the Type 
B uncertainty estimate actually comes closer to the underlying population standard deviation (which is a known 
parameter in generating the random normal deviates) than does the Type A estimate.   
 



 

 

However, using the Castrup method, the estimated Type B degrees of freedom turns out to be considerably less 
than the sample degrees of freedom for the Type A estimate.  This is somewhat disquieting, since the Type B 
estimate is at least as good as the Type A estimate.  Of course, obtaining a smaller degrees of freedom for the 
Type B estimate is a consequence of the difference in the mathematical forms of Eqs. (2) and (3).   
 
Investigation 
The question is, why doesn�t the Castrup method yield a larger degrees of freedom?  It may be that the method 
used to determine σ[u(x)] is flawed, or the GUM relation is flawed, or both.  As a first step in isolating the 
problem, an attempt was made to independently derive Eq. (1).  The attempt begins with a consideration of the 
variance of a sample standard deviation. 
 
Let sν represent the standard deviation, taken on a sample of size n = ν + 1 of a N(0, u2

 ) variable x.  We know 
that the quantity 2 2/s uνν  is χ2-distributed with ν degrees of freedom.  The χ2-distribution has the pdf 
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Accordingly, we set x = 2 2/s uνν , or ( )2 2 /s u xν ν= , and compute the variance in 2sν . 
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For a χ2-distributed x, we have 
( )var 2x ν=  

Substituting in the variance of 2sν  yields 
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as contrasted with Eq. G3 of the GUM 
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We will now compare these alternative expressions by using the Castrup method to obtain ( )2 2/s uνσ  and 
( )2 2 4/s uνσ .  Using Eq. (13) of Ref 2, we have 

 
( ) 2

2 2
2

2 2 2
1

2
L

p
s u e u

u L
ν ϕσ π

ϕ
+� , (6) 

where uL is the uncertainty in the containment limit L and up is the uncertainty in the containment probability p. 
the function ϕ is defined as 

[ ]1( ) (1 ) / 2p pϕ −= Φ + . 

Using the method of Ref 2, we can show that 
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Comparison of Eq. (6) with Eq. (7) reveals that 
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which yields, with the aid of Eqs. (4) and (5),  
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Discussion 
From the above, we can write 
 ( ) ( )2 2 2 24s u sν νσ σ� . (9) 

However, from the properties of the χ2 distribution, we have 
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If Eq. (9) is valid, we have the relation 
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This relation is a consequence of Eq. (9), which is, in turn, a consequence of using the Castrup method.  Also, by 
Eq. (8), the validity of νGUM appears to be dependent on the validity of the Castrup method, which also leads to 
Eq. (10). 
 
I have not found the equality in Eq. (10) in any text, handbook or other reference.  However, I have tested it by 
numerical calculation for values of ν ranging from 1 to 1000.  It turns out that the equality is approximate for 
small values of ν (less than 50 or so) and improves as ν increases.  For instance, it is exact to four decimal places 
at ν = 74. 
 
The approximate nature of the equality may be explained in that it springs from the Castrup method, which 
utilizes an expansion of the error in σ to first order in L and p, i.e., higher order terms are neglected.  The 
approximate nature of the equality also indicates that the expression for ν in Eq. (5) is only approximately 
equivalent to the expression for ν in Eq. (4). 
 
Utility of the Estimates 
It is interesting to consider the case where n = 100.  Suppose σ = 1 and the tolerance limits are ± 1.96.  In this 
case, we would observe about 95% of the �observations� to be within the limits.  This is what occurs when we 
simulate normal deviates.  For example, a typical simulation using these parameters yielded 93% of observations 
within the limits ± 1.96. 
 



 

 

The sample standard deviation was estimated using Eqs. (2) and (3) and the degrees of freedom were calculated 
using Eq. (8).  The results are shown below.1 
 

Table 1 
A typical simulation with n = 100, σ = 1 and L = 1.96. 

 

Description 
Number of 

Observations 

Number 
Observed 
within ± L 

Containment 
Probability p 

Standard 
Deviation 

Deg. 
Freedom 

Population 
Value - - - 1.0 ∞ 

Type A 
Estimate 100 - - 1.089 99 

Type B 
Estimate 100 93 0.93 1.082 60 

 
As has been stated, this example is typical of those for n = 100.  It is interesting to note that, for such cases, the 
Type B standard deviation estimate is at least as good as the Type A estimate.  Again, however, we have the 
result that the Type B degrees of freedom is smaller than the Type A value. 
 
There are at least two possible explanations for this �information loss� that come to mind.  One stems from the 
fact that the variance ( )2 2sνσ  is evaluated using a first-order expansion of the error in 2sν , with higher-order 
terms neglected.  Another possible explanation is that some loss of information may be due to using the binomial 
variance p(1 � p) / n to calculate 2

pu .  If there is no uncertainty in L, this leads to the expression 
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which will always be smaller than n � 1.  Perhaps a different approach to estimating up is in order. 
 
Of course, it might be argued that a binomial statistic p, based on n independent Bernoulli trials, in which a value 
of 1 is assigned to a result within ±L and a value of 0 is assigned to a result external to ±L, does not really 
contain as much information as a sample of data of size n. For instance, if we consider cases where p is nearly 1 
or zero, i.e., cases where we may not obtain any values within ±L or external to ±L, then we have little or no 
information from which to compute a Type B standard deviation.  Given this argument, the smaller Type B 
degrees of freedom associated with computing u with Eq. (3) is an entirely satisfactory outcome. 
 
The Castrup method produces estimates that are consistent with this observation.  For example, ten simulations 
were carried out with n = 300, L = 1.96 and σ = 0.75.  The small σ, relative to L, produced high values of p, 
resulting in poor estimates for σ in some of the trials. The Type B degrees of freedom ranged from 45 to 118.  
The results are shown in the table below.  Note that, although different Type A uncertainty estimates were 
obtained for each simulation, the Type B uncertainty estimates tended to settle into groups.  This is because the 
details of the sample (i.e., the sampled values) are �open� for the Type A estimates and masked or hidden for the 
Type B estimates.  This supports the notion that a lesser amount of information is available for Type B estimates 
than for Type A estimates due to the binomial character of the former.  Again, the smaller degrees of freedom for 
Type B estimates is to be expected. 
 

                                                           
1 Experimenting with larger sample sizes and population standard deviations yield results that are consistent with 
those shown in the table. 



 

 

Table 2 
The results of ten simulations with n = 300, σ = 0.75 and L = 1.96. 

 

Trial 

Type A 
Standard 
Deviation 

Type B 
Standard 
Deviation 

Containment 
Probability p 

Deg. 
Freedom 

1 0.7846 0.8425 0.9800 118 

2 0.7531 0.7224 0.9933 108 

3 0.7679 0.7609 0.9900 84 

4 0.7343 0.7609 0.9900 84 

5 0.7805 0.7609 0.9900 84 

6 0.8000 0.8190 0.9833 108 

7 0.7997 0.7920 0.9867 97 

8 0.7674 0.7920 0.9867 97 

9 0.7514 0.6677 0.9967 45 

10 0.7708 0.7920 0.9867 97 
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