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Background 
The uncertainty, u(t), in the bias εb of a subject parameter at time 
t elapsed since measurement (t = 0) is computed using the value 
of the initial measurement uncertainty, u(0), and the reliability 
model for the parameter population.  The basic concept is an 
extension of the ergodic theorem that states that the distribution 
of an infinite population of values at equilibrium is identical to 
the distribution of values attained by a single member sampled an 
infinite number of times. 
 
The reliability (in-tolerance probability) of the subject parameter 
at time t is related to the parameter's uncertainty according to 
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where f [εb (t)] is the probability density function for the 
parameter bias, -L1 and L2 are the parameter’s tolerance limits.  
For discussion purposes, we will assume for the moment that the 
bias εb is normally distributed with the pdf given by 

 [ ]2 2( ) /2 ( )1[ ( )]
2 ( )

b t u t
bf t e

u t
ε µε

π
− −= , (2) 

where the variable µ(t) represents the parameter’s expected bias 
at time t. 
 
The relationship between L1, L2 and µ is shown below.  Also 
shown is the distribution of the population of biases for the 
subject parameter of interest. 
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Figure 1.  Probability density function for the subject 
parameter bias.  The shaded area represents the in-tolerance 
probability at time t. 

We state that at a given time t, the subject parameter’s expected 
deviation from nominal is given by the relation 

 0( ) ( )t b tµ µ= + , (3) 

where b(0) = 0. 
 

At the time of measurement (t = 0), we estimate a value for µ0 
and label the uncertainty in this estimate u(0).  The remainder of 
this note discusses a method for calculating u(t), given u(0). 
 
Uncertainty Growth Modeling 
If we had at our disposal the reliability model for the individual 
measured parameter, given its initial uncertainty, we could obtain 
the uncertainty u(t) in Eq. (1) directly, by iteration or by other 
means.  However, we usually have information that relates only 
to the characteristics of the reliability model for the population to 
which the subject parameter belongs.  This reliability model 
predicts the in-tolerance probability for the subject parameter 
population as a function of time elapsed since measurement.  It 
can be thought of as a function that quantifies the stability of the 
population.  In this view, we begin with a population in-tolerance 
probability at time t = 0 (immediately following measurement) 
and extrapolate to the in-tolerance probability at time t > 0. 
 

 
Figure 2.  Reliability Modeling Example.  The reliability model can be 
constructed using coefficients obtained from reliability analysis [1] or by 
entering a calibration interval, along with available in-tolerance 
probability data. 
 
If we have recourse to a reliability modeling application, such as 
IntervalMAX [1], we can identify the appropriate reliability 
model and acquire the model’s characteristics.  This information 
can be entered directly in UncertaintyAnalyzer’s Reliability 
Model Worksheet, as shown in Figure 2..  If we do not have 
recourse to the characteristics of the reliability model, we instead 
enter an elapsed time, a beginning-of-period (BOP) reliability and 
an end-of-period (EOP) reliability.  For certain models, we must 
also enter an average-over-period (AOP) reliability.  These values 
apply to the subject parameter's population and are based on 
service history records or engineering knowledge.   
 
We next apply the reliability model obtained from these values to 
the individual parameter under consideration.  In doing this, we 
operate under a set of assumptions. 



 
Assumptions 
In UncertaintyAnalyzer, using a population reliability model to 
estimate uncertainty growth for a parameter employs the 
following set of premises: 

1. The result of a parameter measurement is an estimate of 
a parameter’s value or bias.  This result is accompanied 
by an estimate of the uncertainty in the parameter’s bias. 

2. The uncertainty of the measured parameter’s bias or 
value at time t = 0 (immediately following 
measurement) is the uncertainty of the measurement 
process.1 

3. The bias or value of the measured parameter is normally 
distributed around the measurement result. 

4. The stability of the parameter is inferred from the 
stability of its population.  This stability is represented 
by the population reliability model. 

5. The uncertainty in the parameter’s value or bias grows 
from its value at t = 0 in accordance with the reliability 
model of the parameter’s population.2   

 
Uncertainty Growth Estimation 
As indicated above, uncertainty growth is estimated using the 
reliability model for the subject parameter.  The expressions used 
to compute uncertainty growth vary depending on whether the 
parameter tolerances are two-sided, single-sided upper or single-
sided lower. 
 
General Two-Sided Cases 
Using Eqs. (1) and (2) for parameters with two-sided tolerance 
limits, the reliability function at t = 0 is given by 
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where the function Φ(.) is defined by 
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and where 
 

0 (0)u u≡ . 

The parameter µ0 is an estimate of the parameter's bias at time t = 
0, set equal to either a sample mean or a Bayesian estimate.3  If µ0 

                                                           
1 This may include an additional uncertainty due to error 
introduced by parameter adjustment or correction. 
2  See Eq. (1). 

is set equal to a sample mean value, u0 is set equal to the 
combined uncertainty estimate for the mean value.  If µ0 is set 
equal to a Bayesian estimate, u0 is set equal to the uncertainty of 
the Bayesian estimate. 
 
The reliability at time t > 0 is given by 
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We use relations of the form of Eqs. (4) and (5) to estimate 
uncertainty growth.  Since this growth consists of an increase in 
the initial uncertainty estimate, based on knowledge of the 
stability of the parameter population, it should not be influenced 
by the quantity µ(t).  Accordingly, we construct two population 
reliability functions R0 and Rt, defined by 
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Next, we solve for u0 and ut iteratively.  In UncertaintyAnalyzer 
this is done using the bisection method.4 
 
Having obtained the solutions, we write 
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Once we obtain u(t), we can then solve for the in-tolerance 
probability at time t by using Eq. (5). 
 
At this point, we need a “best” estimate for µ.  For this, we use 
Eq. (3).  In applying this relation, we are cognizant of the fact that 
the uncertainty at time t is5 

 2 2( ) (0) [ ( )]u t u u b t→ + . (9) 

If the function b(t) is not known, we use the last known value of 
µ, namely µ0, the value obtained by measurement.  Substituting 
µ0 for µ in Eq. (5) we have 
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Restricted Two-Sided Cases 
In cases where µ0 = 0 and L1 = L2 = L, Eqs. (6) and (7) becomes 

                                                                                                          
3 In UncertaintyAnalyzer the Bayesian method is referred to as 
SMPC (Statistical Measurement Process Control).  The method is 
discussed in the User Manual and described in References 5 – 11. 
4 See Chapter 9 of Press, et al., Numerical Recipes in Fortran, 2nd 
Ed., Cambridge University Press, 1992. 
5 Methods for determining b(t) and u[b(t)] are the subject of 
current research by Integrated Sciences Group. 
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Single-Sided Cases 
In cases where tolerances are single-sided, u(t) can be determined 
without iteration.  In these cases, either L1 or L2 is infinite, and 
Eqs. (6) and (7) become 
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where L is equal to L1 for single-sided lower cases and is equal to 
L2 for single-sided upper cases.  The plus (minus) sign applies to 
single-sided lower (upper) cases. 
 
Solving for u(t) yields 
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Confidence Limits 
As in other UncertaintyAnalyzer functions, we compute 
confidence limits (expanded uncertainties) from a standard 
uncertainty, a confidence level and the degrees of freedom.  With 
regard to uncertainty growth, (1 – α) × 100% confidence limits 
for the reported value µ0 are constructed according to 

0 / 2, ( )t u tα νµ ± , 

where ν is the degrees of freedom for u(0) and tα/2,ν is the 
corresponding t-statistic. 
 
Supplement 
Note that we have made no attempt to modify the degrees of 
freedom to take into account the fact that time has passed since 
the value u(0) was obtained.  Once methods are developed for 
estimating b(t), this modification will follow naturally.  For 
example, if we can model b(t) according to 

( )b t tλ= , 

then the parameter λ can be found by regression analysis, and the 
degrees of freedom become6 
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where s(λ) is the standard uncertainty in the regression fit for λ 
and n is the number of observed values of b(t) = µ(t) - µ0 
employed in the analysis. 
 
Caution 
The use of s(λ) in the expression for the total degrees of freedom 
is strictly justified only if values of b(t) are computed for the 
observed data.  If values of b(t) are predicted for future 
calibrations, the uncertainty u(t) in Eq. (9) must take into account 
an additional term that reflects a contribution due to the inherent 
growth in the uncertainty in b(t).   
 
This “inherent” contribution is the growth in uncertainty that 
exists in addition to the standard uncertainty in the regression.  It 
arises from randomizing effects that are present during the time 
elapsed since calibration.  Such effects are usually viewed as 
occurring in response to stresses due to usage, handling, storage 
and other factors.   
 
Regression analysis will capture these effects for the particular 
sample used in the regression fit, but will not necessarily be 
applicable in making predictions outside this sample.  Methods 
for modeling the inherent growth in b(t) are the subject of current 
research. 
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