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Methodology 
Typically, a Type B estimate of uncertainty emerges as a cognitive impression based on the recollected 
experience of a technical expert. In the current paradigm, all that is hoped for is an estimate of uncertainty 
without accompanying degrees of freedom or other statistics. In the absence of sampled data from which to 
determine the degrees of freedom associated with an estimate, the degrees of freedom is usually taken to be 
infinite. 
  
This practice in setting the degrees of freedom for a Type B estimate compromises its use as a statistic in 
hypothesis testing or in setting confidence limits. We know that the estimate is not based on an "infinite" 
amount of knowledge. In fact, we usually acknowledge that a Type B estimate is made from less 
knowledge than what typically accompanies a Type A estimate, which is characterized by a finite degrees 
of freedom. So, the upshot is that the estimates in which we have the least confidence are treated with the 
most confidence. The problem is exacerbated when attempting to use Welch-Satterthwaite [1, 2] or other 
means of computing the degrees of freedom for combined Type B and Type A estimates. In these 
computations, the estimates about which we know the least tend to dominate the end result. 
  
To compensate for the unavailability of rigorous degrees of freedom estimates, an "engineering" solution 
has been instituted that gives up on the whole idea of determining useful confidence intervals for Type B or 
mixed Type A/B estimates. In this practice, Type B estimates and mixed estimates are uniformly multiplied 
by a fixed coverage factor that, hopefully, yields limits that bear some resemblance to confidence limits. In 
some cases, this practice may produce useful limits, but there is often no way to tell. Unfortunately, all that 
can truthfully be said about the practice is that, at one point we have an uncertainty estimate and at another 
point we have k times this estimate. Obviously, we have added nothing to our knowledge or to the utility of 
the estimate by applying a fixed coverage factor. 
  
What is needed for Type B estimates, is some way to draw from the experience of the estimator both the 
estimate itself and an accompanying degrees of freedom. It might be pointed out additionally that what is 
also needed is a means of determining the underlying statistical distribution for the estimate. However, such 
determinations are rarely made even for estimates obtained from random samples. The usual assumption, 
which has considerable merit, is to assume an underlying normal distribution. [3-7] This leads to the 
application of the Student's t distribution in computing confidence intervals. In this monograph we will do 
likewise with Type B uncertainty estimates. 
  
The approach to be taken is appropriate for the kind of uncertainty-related information that is available to 
technical experts. This approach begins by formalizing the Type B estimation thought process. This is done 
by viewing the process as an "experiment" involving independent Bernoulli trials. 
  
Bernoulli Trials and Containment Probability 
Suppose we want to find the uncertainty in a variable y from independent Bernoulli trials that each 
determine (measure) whether the value of y lies within limits ±A. The limits ±A are referred to herein as 
containment limits. 
 
We define the likelihood function for the ith trial of n independent trials in the usual way: 
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and, where p is the probability that y is contained within A. The probability p is referred to as the 
containment probability. 
  
A likelihood function is constructed from the results of the n trials according to 
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The containment probability p is estimated by maximizing the likelihood function.  This is done by setting 
the derivative of lnL with respect to p equal to zero 
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This yields an estimate for p of 
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as expected.   
 
The summation in Eq. (2) is the total number of trials measured or observed to lie within ±A.  We denote 
this quantity x: 
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and write Eq. (2) as 
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Estimating Type B Uncertainty 
If we assume a distribution for the variable y, then Eq. (3) allows us to estimate the uncertainty in y, based 
on n observations with outcomes x1, x2, ... , xn. For the sake of discussion, assume that y is normally 
distributed with zero mean and standard deviation uy.  
  
Then the uncertainty in y is determined from the containment limits ±A and the containment probability p 
according to 
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where �(.) is the normal distribution function and ���(.) is the inverse function.1  Substituting from Eq. (3) 
yields a "sample" standard deviation 
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1 Tabulated values of �(.) and ���(.) can be found in most statistics textbooks. 
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Type B Estimation Process 
As stated earlier, we will take an approach to estimating Type B uncertainties that relates to the kind of 
information that is normally available to technical experts. Ordinarily, technicians or engineers do not 
respond sensibly to questions like "in your experience, what is the uncertainty in y?" Instead, they tend to 
express their knowledge of such uncertainty in statements like "out of n observations on the variable y, 
approximately x have been found to lie within ±A;" or "y lies between ±A in approximately x out of n 
cases;" or "y lies between ±A about p percent of the time;" etc. We see that such statements can be loosely 
viewed as experimental results of Bernoulli trials as discussed above. 
  
Responses of the "x out of n" variety can form the basis for estimation of uncertainty using Eq. (4). If 
Bernoulli trials are systematically observed and recorded, such estimates may be regarded as Type A. If, on 
the other hand, Bernoulli trials are recollected as an impression based on experience, then the estimates are 
Type B. In both cases, it is possible to determine workable estimates of the degrees of freedom. 
  
Type B Degrees of Freedom 
In Appendix G of The Guide to the Expression of Uncertainty in Measurement [1], a relation is given for 
calculating a Type B degrees of freedom: 
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where uB is a Type B uncertainty estimate, and �2(uB) is the variance in this estimate.  Information 
necessary for computing this variance will be expressed in three formats: 
  
Format 1: Approximately X% (±�X%) of observed values have been found to lie within the limits ±A 
(±�A). 
Format 2: Between X% and Y% of observed values have been found to lie within the limits ±A (±�A). 
Format 3: Approximately x out of n values have been found to lie within the limits ±A (±�A). 
Format 4: Approximately X % of n values have been observed to lie within the limits  ± A (± �A). 
  
Computation of the Variance in the Uncertainty 
We generalize Eq. (4) to read 
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where p is the containment probability, and 
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The error in uB due to errors in A and � is obtained from Eq. (7) in the usual way 
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where �(A) and �(p) are errors in A and p, respectively.  Assuming statistical independence between these 
errors, the variance in uB follows directly: 
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Dividing Eq. (10) by the square of Eq. (7), we get  
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The derivative in Eq. (11) is obtained from Eq. (8).  We first establish that 
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We next take the derivative of both sides of this equation with respect to p to get 
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and, finally, 
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Substituting Eq. (12) in Eq. (11) yields 
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Use of Format 1 
With Format 1, a technical expert is asked to provide ± limits for both the containment limits and the 
containment probability. These limits are used to estimate uA and up.  In using Format 1, the containment 
probability is given by 
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where X is the percentage of values of y observed within ±A.   
 
If we assume that the errors in the estimates of A and p are approximately uniformly distributed within ±�A 
and ±�p = ±�X% / 100, respectively, then we can write 
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Substitution in Eq. (13) gives 
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Use of Eq. (16) in Eq. (6) yields an estimate for the Type B degrees of freedom for Format 1: 
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Note that, if �A and �p are set to zero, the Type B degrees of freedom becomes infinite. 
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Use of Format 2 
With Format 2, the variance in A is obtained as in Format 1.   The containment probability p is set at the 
midpoint between the lower and upper percentages divided by 100, and the variable �p is set equal to half 
the difference between these percentages divided by 100.  All else is the same as in Format 1. 
  
Use of Format 3 
With Format 3, the variance in the containment probability p can be obtained by taking advantage of the 
binomial character of p: 
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Substitution in Eq. (13) and using Eq. (15) for the uncertainty in A yields 
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Use of Format 4 
With Format 4, the variance in A is obtained as in Format 3.   The containment probability p is a user-
specified percentage.  All else is the same as in Format 3. 
 
Examples 
All four formats are exemplified in the figures below.   

 

 
 

Format 1.  Degrees of freedom estimate for a case where approximately 
80% of observed values are recalled as being within ± 10. The 
approximate nature of the estimate is embodied in the error limits ± 15% 
and ± 1. 

 
 
Format 2.  Degrees of freedom estimate for a case where between 65% 
and 95% of observed values are recalled as being within ± 10 (±1).  
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Format 3.  Degrees of freedom estimate for a case where approximately 
16 out of 20 observed values are recalled as being within ± 10. The 
approximate nature of the estimate is embodied in the error limits ± 1 and 
in the binomial character of the estimate. 

 
 
Format 4.  Degrees of freedom estimate for a case where approximately 
80% out of 20 observed values are recalled as being within ± 10 (± 1). 

 
  
Conclusion 
By obtaining values for the degrees of freedom for Type B uncertainty estimates, we place these estimates 
on a statistical footing.  It is through the medium of the degrees of freedom statistic that the approximate 
nature of Type B estimates is quantified.  Once this quantification has been achieved, Type B estimates can 
take their place alongside Type A estimates in developing confidence limits, estimating measurement 
decision risks and in other activities where the uncertainty estimate is taken to be a standard deviation for 
an underlying error distribution.   This is particularly evident in combining Type A and B estimates into a 
total uncertainty.  Given rigorous values for the degrees of freedom for both Type A and B components, the 
degrees of freedom for the combined total can be determined using the Welch-Satterthwaite formula.  This 
means that the combined total may also be treated statistically. 
  
A happy consequence of this is that we can rid ourselves of the embarrassment of arbitrary coverage factors 
that often bear no relationship to confidence levels or anything else of use.  In addition, we no longer need 
to obfuscate the communication of uncertainty analysis results with the term "expanded uncertainty" to 
mask our inability to handle Type B estimates in a statistical way.  Instead, we can return to the use of 
confidence limits based on considerations of uncertainty and probability.  Finally, we no longer need to 
advise people to employ the uniform or some other simplifying distribution to estimate uncertainties in 
situations where these distributions are totally inappropriate. 
  
The foregoing is not meant to imply that the problem of estimating Type B degrees of freedom has been 
solved and put to bed in this monograph.  More research is needed in the area of extracting objective data 
from subjective recollections and in quantifying the lack of knowledge accompanying such data.  With 
regard to the latter, work is required to generalize the methodology presented herein to non-normal 
distributions (such as may pertain to asymmetric error limits) and to the problem of combining distributions 
of mixed character. 
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